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Abstract— The study focus is to use some data 
records to train Convolutional Neural Networks 
(CNN) model for predicting the annual peak load 
demand for the city of Uyo in Akwa Ibom State. 
Furthermore, the CNN model was used to forecast 
the load demand for some years ahead. The study 
utilized a dataset with six different variable for the 
CNN model training and performance analysis. 
The six variables include population, GDP/Capita 
(USD), rainfall (mm), temperature (degree 
centigrade), wind speed (m/s) and peak load (MW). 
Feature importance for the CNN model was 
assessed using SHAP tool that helped determine 
the contribution each input variable has on the 
ANN model.  The results showed that optimal 
selection of features using the SHAP values 
enhanced the CNN model’s MSE by 73.99   % over 
the baseline case without feature selection. Also, 
the process improved the RMSE by 49.00 %, MAE 
by 48.89 % and R^3 by 9.04 %. The results on the 
load forecast show that the peak load forecasted 
increased from 48.5 MW in 2024 to 55.6 MW in 
2028. 
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1. Introduction 

Effective power supply management to different 
clusters of user requires proper understanding of the load 
demand in the various clusters [1,2,3]. In a statewide power 
distribution network, each city within the State constitute a 
cluster of users. Hence, the knowledge of the energy 
demand pattern of each city is required for proper energy 
supply to the State [4]. This is particularly important for 

situations where there is inadequate energy supply for the 
entire clusters of users at the same time [5,6]. 

In addition, knowledge of the future energy 
demand is essential for power system planning [7,8,9]. It 
ensures that the present power system components are sized 
to accommodate the future power demand [10,11,12]. In 
order to know the future power demand, load model is 
required to capture the load demand pattern based on 
certain parameters of the user group and the time series 
load demand of the group [13,14]. Accordingly, in this 
paper, Convolutional Neural Networks (CNN) is used to 
model the electric load demand of the city of Uyo in Akwa 
Ibom State [15,16]. The model prediction performance is 
further enhanced by incorporating feature selection using 
SHAP tool [15,16]. In all, the CNN model is used to 
forecast the load demand for the city of Uyo for some years 
ahead.  

2. Methodology 
2.1 The study dataset 

The study focus is to use some data records to train 
Convolutional Neural Networks (CNN) model for 
predicting the annual peak load demand for the city of Uyo 
in Akwa Ibom State. Furthermore, the CNN model was 
used to forecast the load demand for some years ahead. The 
study utilized a dataset with six different variable for the 
CNN model training and performance analysis. The six 
variables include population, GDP/Capita (USD), rainfall 
(mm), temperature (degree centigrade), wind speed (m/s) 
and peak load (MW). The summary of the data components 
in the case study dataset is shown in Table 1. The line plot 
of the normalized values of the six parameters used in the 
study is shown in Figure 1. 
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Table 1 The summary of the data components in the case study dataset 

Groups Population 
GDP/Capita 

(USD) 
Rainfall (mm) 

Temperature 
(Degree 

Centigrade) 

Wind Speed 
(m/s) 

Load 
(MW) 

Num of observations 5,113 5,113 5,113 5,113 5,113 5,113 
Num of missing values 0 1 0 0 0 0 

Minimum 338,273 1,607 0 21.82 1.97 23 
Maximum 535,892 3,201 192.92 35.71 12.89 48 

Range 197,619 1,594 192.92 13.89 10.92 25 
Mean (x̄) 429,533.80 2,354.83 10.8423 28.2979 5.4735 35.8029 

Standard Deviation (S) 56,964.35 377.3984 14.2597 2.3178 1.3275 5.0226 
Q1 379,507 2,072.85 1.5 26.78 1.7624 32 

Median 425,767 2,220.07 6.55 28.77 4.95 35 
Q3 477,666 2,634.78 15.18 29.76 4.97 39 

Interquartile range 98,159 561.93 13.68 2.98 5.95 7 

 
Each of the six variables was normalized using 

minmax approach (expressed in Equation 1) and the 
normalized is split into 70 % for application in the CNN 
model training, 15 % in the CNN model validation and 15 
% in the CNN model testing. 

x୬ ൌ  
୶ି୶ౣ౟౤

୶ౣ౗౮ି୶ౣ౟౤
    for x =1,2,3,…,n  

  (1) 
where xmin and xmax are the minimum and 

maximum values of all observations for a given variable 
respectively and x is the xth data item in the given variable 
with n total data records in the dataset. 

 
Figure 1 The line plot of the normalized values of the six parameters used in the study 

2.2 The CNN Architecture, Training and Validation  
In the CNN model architecture (shown in Figure 

2), input data was passed through series of layers with 
filters which include input layer, convolution layer, pooling 
layer, fully connected layer and output layer. The activation 
function was then applied to make the classification which 
is the output.  The arrangement in CNN models provided 

the layers with capability to extract valuable features 
embedded in the dataset. The architecture of the CNN 
model developed in this study has five layers as shown in 
Figure 2.  The configurations of CNN model are 
summarized in Table 2 while the CNN  hyperparameters 
configurations are shown in Table 3. 
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