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Abstract— This study introduces a method for 
automatically identifying trees, including their 
diameters and heights, from readily available 
LIDAR satellite data and converting the 
information into compact GIS records. This 
approach streamlines urban park and green area 
inventory processes by reducing data storage 
requirements from gigabytes to kilobytes. 
Combining machine learning with geospatial 
analysis, the method enhances efficiency in 
managing urban green spaces while supporting 
sustainable development and environmental 
monitoring. The case study demonstrates its 
effectiveness and potential for broader 
applications in urban planning. 
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I.  INTRODUCTION  

Urban green spaces, such as parks and 
recreational areas, play a pivotal role in enhancing the 
quality of life in cities by improving air quality [1], 
mitigating the urban heat island effect [2,3], and 
providing spaces for recreation and social interaction 
[4,5]. These green spaces not only support biodiversity 
and ecological balance but also contribute significantly 
to public health and well-being. Effective management 
and conservation of urban green spaces depend on 
the availability of accurate, up-to-date inventories of 
trees and vegetation. Traditionally, these inventories 
are compiled through field surveys, which, while 
providing highly accurate data, are often time-
consuming, labor-intensive, and not suitable for large-
scale or continuous monitoring. 

In response to these challenges, remote sensing 
technologies have emerged as a promising alternative 
for gathering detailed and spatially extensive data on 
vegetation. Among these technologies, airborne 
LIDAR (Light Detection and Ranging) has proven to be 
particularly useful due to its ability to capture high-
resolution three-dimensional data of the Earth's 
surface. LIDAR systems can measure various tree 
attributes, such as height, canopy structure, and 
spatial distribution, with impressive accuracy, making it 
an ideal tool for vegetation analysis across large urban 
areas. However, the large volume of raw LIDAR data 

poses significant challenges in terms of storage, 
processing, and integration into practical applications. 
In urban environments, where efficient data 
management is crucial, this becomes a key obstacle 
for widespread adoption. 

This study proposes a novel approach to 
overcoming these challenges by automatically 
recognizing tree attributes, including diameters and 
heights, from readily available satellite-derived LIDAR 
data. By converting this information into compact GIS 
(Geographic Information System) records, this method 
significantly reduces the size of stored data, enhancing 
the practicality of LIDAR data for urban park and green 
area inventories while maintaining a high level of 
accuracy. This approach aims to streamline the 
process of urban green space management, making it 
more efficient and scalable while also ensuring that the 
data is easily accessible and usable for urban planners 
and policymakers. 

II. LITERATURE REVIEW 

The integration of LIDAR data into urban vegetation 
analysis has seen significant advancements in recent 
years. Various algorithms, often incorporating machine 
learning or point cloud processing techniques, have 
been developed to classify LIDAR points as 
vegetation, identify individual trees, and estimate their 
attributes with remarkable precision. Remote sensing 
data for such analysis can be derived from airborne 
platforms, including multispectral, hyperspectral, and 
LIDAR sensors, as well as spaceborne multispectral 
remote sensing systems [6]. These datasets have 
been widely utilized in forestry applications [7-11], 
urban gardening [12], and particularly for the 
monitoring and planning of urban green spaces [13]. 

LIDAR's unique ability to penetrate tree canopies 
and capture the underlying ground surface makes it 
particularly suitable for tree recognition. By analyzing 
the 3D information provided by LIDAR data, it is 
possible to extract detailed tree characteristics such as 
height, diameter at breast height (DBH), canopy 
structure, and spatial distribution. For example, one 
recent study introduced a multi-scale individual tree 
detection (MSITD) algorithm, which combines both 
raster-based and point-based approaches to detect 
individual trees in LIDAR data with high accuracy [14]. 
Other methods, such as Convolutional Neural 
Networks (CNN), have also been employed for 
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individual tree detection in urban environments, 
yielding promising results for large-scale tree 
recognition and classification [13,15]. 

Despite the progress made in applying LIDAR data 
for tree recognition and urban vegetation analysis, 
many existing methods focus primarily on maximizing 
accuracy and improving the sophistication of models. 
However, these approaches often overlook the 
practical challenges of data size reduction and ease of 
integration with urban planning tools. The raw point 
cloud datasets generated by LIDAR systems can be 
enormous, and while high precision is desirable, the 
large size of these datasets often makes them difficult 
to manage and utilize effectively in real-world 
applications. 

Furthermore, most existing systems for tree 
recognition and classification rely heavily on extensive 
preprocessing and computational resources, which 
can be prohibitive for urban planners who require 
accessible and efficient tools. While GIS remains the 
primary tool for urban planning and green space 
management, many of the current methods for tree 
recognition from LIDAR data do not produce outputs 
that are easily integrated into standard GIS workflows. 
This limitation reduces the practical applicability of 
such methods for urban planning professionals who 
need user-friendly and scalable solutions for managing 
urban green spaces. 

The need for methods that not only recognize and 
model trees effectively but also reduce the size of the 
data and integrate seamlessly with GIS tools is 
increasingly pressing. By addressing these challenges, 
tree recognition from LIDAR data can be transformed 
into a powerful tool for urban planning and 
management. When coupled with GIS, this technology 
can enable the creation of detailed and easily 
navigable digital inventories, facilitating better 
decision-making in urban forestry, environmental 
monitoring, and green space planning. 

In summary, while significant advancements have 
been made in tree detection and recognition from 
LIDAR data, there remains a gap in methodologies 
that balance accuracy with data efficiency and ease of 
integration into commonly used planning tools. The 
proposed approach aims to bridge this gap by 
providing an effective solution for urban tree mapping 
that is both accurate and practical for large-scale 
applications in urban environments. 

III. PROBLEM FORMULATION  

Tree parameter recognition methods, based on 
either laser scanning (LIDAR) or aerial photography, 
can generally be classified into three categories: 
raster-based methods, point-based methods, and 
combined methods [16]. Each of these methods has its 
strengths and weaknesses depending on the data 
resolution and the environment in which they are 
applied. Two critical challenges in tree recognition are: 

 Separating individual trees from a group of trees—a 
task that becomes more complex when trees grow 
closely together or are obscured by surrounding 
vegetation. 

 Species identification—in urban environments, 
especially in parks or areas where trees have 
been artificially planted, determining the species 
from LIDAR data is notably challenging. 

In natural forests, where trees grow freely without 
interference, it is generally easier to estimate or infer 
the size and shape of individual trees [17]. However, 
urban environments present unique difficulties, as 
trees are often pruned and shaped artificially, leading 
to distorted or non-natural forms that complicate tree 
recognition. Furthermore, the urban landscape is 
typically diverse, with various tree species planted in 
close proximity, further hindering the ability to 
distinguish between species based solely on tree 
crowns. 

A. Challenges in Tree Recognition from LIDAR Data 

One of the most significant difficulties in tree 
recognition from satellite LIDAR data arises from the 
low resolution typically offered by these datasets, 
which generally ranges between 5 and 15 cm. This 
resolution is insufficient for detailed analysis of finer 
features like leaves or branches, making species 
identification via these characteristics impossible. In 
this case, recognition is primarily based on the shape 
and color of the tree crowns. 

A common approach in forestry applications to 
differentiate tree species is the use of machine 
learning algorithms, such as the Random Forest 
method [17,18]. These models are trained with sample 
data that provide known characteristics of tree species, 
and then applied to classify new trees. However, this 
approach works best when the species are already 
known and the task is to differentiate and size them 
[19]. In urban environments, especially in parks where 
trees have been planted artificially, there is a greater 
degree of variability in tree species, making it more 
difficult to apply the Random Forest method effectively. 
Additionally, the presence of numerous tree varieties 
and the artificial shaping of crowns complicate the 
task. In such cases, larger and more complex sample 
datasets are required to improve the accuracy of 
species recognition. 

Despite the challenges, LIDAR data has become 
widely available, with global datasets now accessible 
for free to cover all of Earth's surface [20]. However, 
the application of LIDAR data is still limited due to the 
significant computational resources required to 
process and visualize it. Regular computer systems 
used by everyday consumers are often not capable of 
handling or displaying such large-scale datasets 
effectively. In the context of urban planning, the typical 
data needed includes tree size, species, and location, 
all of which can be extracted from point cloud data. 

B. Characteristics and Classification of LIDAR Data 

LIDAR data is typically composed of millions of 3D 
points, each having spatial coordinates along with 
spectral information. These points are usually 
classified into categories such as ground surface, 
vegetation, artificial surfaces, and buildings. The 
precise classification can vary depending on the 
dataset and the methods used for processing [21]. For 
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tree recognition, the classified vegetation points 
represent the most relevant data, as shown in Figure 
1, where trees are included under the category of 
"High Vegetation." 

 
Fig. 1. Classified LIDAR points (trees appear 

under category “High Vegetation”). 

In urban environments, trees can be categorized 
into several types based on their spatial arrangement: 

 Solitary Trees: These are individual trees that grow 
separated from other vegetation. 

 Lined Trees: These trees are arranged in rows, 
often forming alleys or lining streets. 

 Grouped Trees: These trees grow closely together, 
forming dense clusters. 

The most complex tree group to recognize and 
separate is the grouped trees, where individual trees 
are difficult to distinguish due to overlapping crowns 
and interlocking branches. In such cases, the methods 
used to divide the group into separate trees may vary 
depending on species, the volumetric size of the 
group, and other environmental factors. Unfortunately, 
no method can guarantee 100% accuracy when 
attempting to separate these groups, making this step 
one of the most challenging in the tree recognition 
process. 

C. GIS Integration and Visualization 

Geographic Information Systems (GIS) are widely 
used in urban planning and management, allowing for 
the efficient handling and visualization of spatial data 
[22]. While LIDAR data can be visualized in GIS, its 
high computational requirements make it impractical 
for everyday use by urban planners or citizens. Most 
GIS software used for town planning comes with built-
in 3D tree symbols that allow for the visualization of 
trees in their environment, along with their crown 
types. 

In GIS, trees are typically represented by point 
features with associated attributes such as crown 
height, width, and species. With LIDAR data, the tree 
crown form can be recognized and assigned to one of 
the standard tree crown types, enabling more effective 
visualization. 

By converting LIDAR data into actionable GIS 
records, urban planners gain a comprehensive 
understanding of the trees within their jurisdiction. The 
ability to visualize this data quickly and easily reduces 
the need for storing large amounts of raw data. This 
makes the process more efficient, improves urban tree 
management, and ensures that all relevant information 
about trees—such as their size, species, and 
location—is readily available for decision-making. 

IV. METHODOLYGY  

Tree Recognition from LIDAR Data: Step-by-Step Process 

The process of recognizing trees from LIDAR data 
involves several key steps that enable accurate 
extraction of tree attributes while ensuring compatibility 
with GIS systems. These steps include data filtering, 
segmentation, attribute extraction, classification, and 
record creation. Below is an expanded and detailed 
description of each stage: 

A. Filtering LIDAR Points for Vegetation and Ground 

Surface 

The first step in tree recognition involves filtering 
the LIDAR data to isolate points representing 
vegetation and ground surfaces while discarding other 
categories, such as buildings and artificial structures. 
This is typically an automated task performed within 
GIS software, which classifies LIDAR points based on 
their spectral and spatial properties. By narrowing the 
dataset to vegetation points, this step ensures that 
only relevant data is processed in subsequent stages, 
reducing computational requirements and improving 
efficiency. 

B. Separating Points for Individual Trees and Tree Groups 

The next step is to segment the filtered vegetation 
points into individual trees and tree groups. This can 
be achieved using tools like the Treeiso MATLAB 
plugin [23]. During this process, tree clusters are 
categorized as either linear groups or massive groups: 

 Linear Groups: These are common in urban 
settings, where trees are planted in rows along 
streets, pathways, or buildings. Trees in linear 
groups are typically evenly spaced, making them 
easier to separate and identify individually. 

 Massive Groups: These consist of densely packed 
trees, often found in parks or natural green areas. 
Segmenting massive groups into individual trees is 
more challenging due to overlapping canopies and 
irregular growth patterns. Typically, larger and 
taller trees are located in the center of the group, 
and their crowns can be sized relative to the 
group's overall height. Trees in such groups tend 
to grow taller and narrower than solitary trees, 
adding to the complexity of this task. 

Accurately dividing tree clusters into individual trees 
remains a significant challenge, especially for massive 
groups, and requires advanced algorithms that 
consider spatial relationships, crown overlap, and 
height variations. 

C. Extracting Tree Attributes from 3D Crown Points 

Once individual trees or tree groups are identified, 
the 3D points representing each tree's crown are 
analyzed to extract key attributes. These include: 

Tree Height: Measured as the vertical distance 
from the ground to the highest point in the crown. 

Maximum Crown Radius: The largest horizontal 
distance from the tree's center to the edge of its crown. 
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Crown Volume: Estimated based on the distribution 
of points within the crown. 

Crown Form Code: A text-based representation of 
the tree's crown shape, derived from radii measured at 
regular intervals (e.g., every 2 meters). For instance, 
the text line:  
"5.17/5.17/4.75/4.23/3.93/3.52/2.81/2.07/0.67" 
encodes the crown's form in Figure 2.  

 
Fig. 2. Tree crown form data is represented in a text line 

showing radiuses in 2m steps. 

This crown form code can also serve as input for 
deep learning algorithms trained to recognize tree 
species. However, urban environments present unique 
challenges: 

Tree species in urban areas are often highly 
diverse, even within small regions. Many urban trees 
have artificially pruned or shaped crowns, making 
species recognition more difficult. In such cases, the 
crown form code is more practical for visualization 
purposes than species identification. 

D. Assigning Tree Forms and Classifications 

Using the extracted crown form code, trees can be 
categorized into predefined crown shapes (see Figure 
3). These standard forms are commonly used in GIS-
based 3D symbology, facilitating accurate visual 
representation and easy integration into urban 
planning workflows. 

 

Fig. 3. Tree crown types. 

E. Creating GIS Records for Tree Data 

The final step involves converting the extracted tree 
data into GIS-compatible records. Each tree is 

represented as a point feature, with its longitude and 
latitude coordinates marking the trunk position on the 
ground. While this trunk position may not be entirely 
accurate for asymmetrical trees, it provides a practical 
approximation for GIS applications. 

Each point feature includes attributes such as tree 
height, crown radius, crown volume, and species or 
crown form code. These compact GIS records 
eliminate the need to store vast amounts of raw LIDAR 
data, making visualization and manipulation of tree 
data both fast and efficient. 

Benefits for Urban Planning 

With this processed data, urban planners gain 
access to a comprehensive digital inventory of trees 
within the urban environment. This allows for: 

 Rapid visualization and assessment of tree 
locations and attributes. 

 Streamlined integration into existing GIS workflows. 

 Significantly reduced data storage requirements, as 
gigabytes of raw LIDAR data are condensed into 
kilobytes of useful information. 

 By automating and optimizing the tree recognition 
process, this method enhances urban green space 
management and supports data-driven decision-
making for sustainable urban development. 

V. CASE STUDY 

For this case study, we selected a 500x500-meter 
LIDAR scan data rectangle of Zarasai, a verdant small 
town in Lithuania, Europe. The chosen area 
encompasses the town's main square, streets lined 
with planted trees, smaller rows of decorative trees in 
the central park, and several naturally occurring 
groups of trees. This diversity of vegetation types 
offered an ideal testbed for evaluating the performance 
of our tree recognition methodology. 

The LIDAR data, provided in LAS format, was 
sourced from a state-authorized institution's online 
platform, geoportal.lt. Once unarchived, the dataset's 
size amounted to 429 MB. The data included 
classifications into categories such as ground surface, 
buildings, and vegetation (as detailed in Figure 1). To 
isolate tree-specific data, the classified vegetation 
points were extracted into a separate LAS file for 
further processing. 

Initially, the extracted data was processed using the 
Treeiso MATLAB plugin [23], which grouped the points 
into potential tree clusters. While this step successfully 
separated some trees, it often failed to divide densely 
packed tree groups into individual entities. This 
limitation was particularly evident in areas with 
naturally grown trees, where overlapping canopies 
made segmentation more complex. 

To address this issue, the data underwent 
additional processing using Python, specifically the 
segment_lidar library. While this step improved the 
segmentation to some extent, it still resulted in errors, 
particularly with densely vegetated areas. The inability 
to reliably separate individual trees within large 
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clusters remains a significant limitation of the current 
method. 

This segmentation challenge highlights the need for 
more sophisticated algorithms tailored to urban 
environments, where trees often grow in irregular 
patterns and form complex clusters. Future 
improvements could involve integrating advanced 
logic-based rules, such as combining tree height, 
crown dimensions, and spatial distribution patterns, to 
enhance the accuracy of segmentation. 

Despite these challenges, the case study provided 
valuable insights into the strengths and weaknesses of 
the proposed method. While the approach performed 
well in areas with solitary or evenly spaced trees, 
further refinement is needed to improve its 
effectiveness in segmenting densely grouped trees. 
These findings underscore the importance of algorithm 
development for applications in urban green space 
management, where accurate tree inventory is critical 
for effective planning and conservation. 

TABLE I.  GIS ATTRIBUTE TABLE EXAMPLE 

Id R Volume Sub_form 

1 6.82 83.97 “6.81/7.42/…. 

2 4.21 25.18 “4.15/4.21/…. 

3 5.34 45.67  “5.29/5.34/... 

…… 

5567 3.45  18.23  “3.10/3.20/... 

5568 3.92  21.34  “3.57/3.72/... 

The results of the analysis were saved in GIS shapefile 
(SHP) format, a widely used standard for geospatial 
data. Visualization of the processed data was 
conducted using ArcGIS 3.4 Educational version. 
While this software is powerful and versatile, it has 
certain limitations when displaying attributes such as 
the radius and height of point entities directly. Due to 
these constraints, only the R (radius) value was used 
to set the size of the tree symbols in the visualization. 
As a result, the generated map provided a simplified 
representation of tree sizes, which did not fully reflect 
the actual crown dimensions or heights, leading to a 
less accurate visualization (Figure 4). 

 
Fig. 4. Tree recognition result for the main 

square 

When applied to the remaining territories, the results 
exhibited variability, primarily due to the 
aforementioned limitations in accurately dividing tree 
groups. As shown in Figure 5, densely vegetated 
areas posed particular challenges, where individual 
trees within groups were not always correctly 
segmented. This issue was most evident in parks and 
areas with naturally growing vegetation, where 
overlapping canopies and irregular growth patterns 
complicated the separation of trees into distinct 
entities. 

 
Fig. 5. Tree recognition result for the outskirts of 

the town 

To address these visualization and segmentation 
challenges in future work, a combination of enhanced 
tree separation algorithms and advanced GIS 
symbology could be implemented. For example, 
incorporating both height and radius into symbol 
definitions, supported by more detailed classification 
and segmentation workflows, could improve the 
representation of urban trees. Such advancements 
would lead to more accurate visualizations and better 
support for urban planning and green space 
management. 

VI. CONCLUSIONS  

This study presents a streamlined method for 
recognizing and analyzing urban trees from freely 
available satellite LIDAR data, offering a practical 
solution to the challenges of traditional tree inventory 
methods. By extracting essential tree attributes such 
as height, diameter, and crown structure, and 
converting them into compact GIS records, the 
proposed method bridges the gap between advanced 
remote sensing technologies and urban planning 
applications. 

A key strength of this approach lies in its ability to 
significantly reduce data storage requirements, 
transforming gigabytes of LIDAR data into lightweight, 
user-friendly GIS datasets. This enables urban 
planners and policymakers to efficiently manage urban 
greenery without the need for extensive computational 
resources. The integration of this method with existing 
GIS workflows ensures seamless adoption by 
professionals, while its scalability supports large-scale 
urban green space monitoring and management. 

The case study demonstrated the effectiveness of 
this approach, although challenges remain, particularly 
in accurately segmenting trees within dense vegetation 
groups. Future improvements should include refining 
segmentation algorithms, addressing inconsistencies 
in tree grouping, and enhancing tree classification 
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processes using species-specific data. Additionally, 
the development of more advanced artificial 
intelligence techniques, such as deep learning, could 
enhance the identification of tree species and crown 
types even in urban environments where tree 
morphology is highly variable due to artificial shaping. 

Beyond its technical contributions, this study 
highlights the potential for combining remote sensing 
data with geospatial tools to support sustainable urban 
development. By providing an accessible, efficient, and 
scalable solution, the proposed method empowers 
urban planners to make informed decisions about 
green space management, biodiversity conservation, 
and climate adaptation. Its application in diverse urban 
settings ensures that cities can better adapt to the 
challenges of rapid urbanization while maintaining the 
ecological and social benefits provided by urban 
greenery. This approach offers a significant step 
forward in leveraging cutting-edge technologies for 
smarter, greener cities. 
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