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I.  INTRODUCTION 

We know that from the beginning of early 
development of the quantum field theory ultraviolet 
divergent problem encountering in it acquired central 
place and attempts its solutions have been done by 
many numerous authors. Recently, in spite of titanic 
strengthening in elimination of ultraviolet divergences 
in calculations of matrix elements of 𝑆 -matrix in field 
theory, until now full and satisfactory solutions of this 
problem are absent. By Feynman’s joke, for the time 
being, we put it under a nice carpet. 

Among many attempts for solving ultraviolet 
divergences, like beginning of primitive high 
momentum cut-off, Paulli-Villars regularization 
procedure, introducing formfactor cut-off, or cyclic 
regularization of vacuum polarization diagrams and so 
on, gauge invariant unification of all forces in nature, in 
particular, electroweak unification and the string theory 
connected with a "size" of particles like strings play a 
vital role in solving devergent problems in interaction 
mechanisms between elementary particles. Moreover, 
introducing superfields which are mixed bosons and 
fermions lead to cancel their closed loops altogether. 

In this work, we propose threefold way to 
elimination of ultraviolet divergences in 𝑆  -matrix 
elements by using more primitive ides: 

-The first: 

Initial roots of this difficult problem belong to the 
classical physical level, when potential forces like 
Coulomb, Newtonian and Yukawa potential acquire 
singularity at the point 𝑟 = 0. Indeed, Fourier transform 
by using the Yukawa procedure and idealized concept 
about structureless point-like particle’s potentials 
𝑈𝐶(𝑟), 𝑈𝑁(𝑟), 𝑈𝑌(𝑟) are related in the static limit with 
corresponding force carrying particle’s propagators of 
photon, graviton and scalar particle with mass 𝑚: 

𝐷𝛾,𝑔,𝑌(𝑝) =
1

(2𝜋)3
∫ 𝑑3𝑟𝑒𝑖𝑝⃖𝑟⃖𝑈𝐶,𝑁,𝑌(𝑟) ⇒

{
 
 

 
 

1

𝑝→
2 →

1

𝑝0
2 − 𝑝→

2
− 𝑖𝜖

1

𝑚2 + 𝑝→
2 →

1

𝑚2 − 𝑝0
2 + 𝑝→

2
− 𝑖𝜖}

 
 

 
  

It means that classical level, singularities 

automatically pass to calculations of 𝑆  -matrix 
elements. Therefore, this is one reason of presence of 
ultraviolet divergences in quantum physics. 

- The second: 

According to above situation and concrete 
calculation propose, we assume that for some cases 
elementary particles instead of strings behavior, also 
have other simple structure like rigid spheres or rigid 
sticks. For example, if a changed particle is considered 
as a rigid stick then its propagator is changed 
according to above procedure [29]. 

-The third: 

Recently, according to ten-dimensional string 
theory and eleven-dimensional M-theory, high-
dimensional spacetime plays a vital role in physical 
theories. In this connection, there are some interests in 
studying corrections arisen from high-dimensional 
spacetime to physical quantities like different potential, 
equations and propagators of force carrying particles 
and to construct quantum field theory within framework 
of existence of fundamental length like Planck one. 
Roughly speaking, if we allow to introduce Planck 
length into physical calculations then it means that we 
can taking into account gravitational effects into 
physical quantities through the Newtonian constant 𝐺 
intering into the Planck length. This program is realized 
in section 2-3. It turns out that mathematical 
calculations of physical quantities in any dimensional 
case possess remarkable and beautiful universal 
characters independing on numbers of high-
dimensional spacetime. These properties will be 
shown in these sections. 

In conclusion, mathematical bases of this work are 
presented in Namsrai [24], [25] and [26]. Also 
historically, problems discussed in this review article 
were originated in the book "Theoretical physics in the 
twentieth century" (A memorial volume to W.Pauli) 
[27]. 
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II. MATHEMATICAL CALCULATION 

A. Fourier Transformation of Physical potentials 
in d-dimensional space 

To construct physical theory in any D-dimensional 

Minkowski space (𝐷 = 𝑥0 = 𝑐𝑡, 𝑑 -space dimension it 
should be consider, in first d-dimensional Euclidean 
space and study Fourier transform of physics 
quantities in interest. For example, it is well known 
that in the static limit the Coulomb and the Yukawa 
potentials are related with a photon propagator and a 
propagator of a scalar particle with mass 𝑚  by the 
following formulas: 

𝑈𝐶(𝑟) =
𝑒

(2𝜋)3
∫
𝑑3𝑝

𝑝→
2 𝑒

𝑖𝑝→⋅𝑟→ =
𝑒

4𝜋

1

𝑟
                                 (1)  

and 

𝑈𝑌(𝑟) =
𝑔

(2𝜋)3
∫

𝑑3𝑝

𝑚2 + 𝑝→
2 𝑒

𝑖𝑝→⋅𝑟→ =
𝑔

4𝜋

1

𝑟
𝑒−𝑚𝑟           (2) 

In order to obtain the Newtonian potential by using the 
graviton propagator we use its form for Minkowski 
space in general relativity [1]: 

𝐺𝛼𝛽,𝜇𝜈 =
𝑃𝛼𝛽,𝜇𝜈
2

𝑝2
−
𝑃𝑠,𝛼𝛽,𝜇𝜈
0

2𝑝2
=
𝛥𝛼𝛽,𝜇𝜈

𝑝2
 

=
1

𝑝2
⋅ [𝑔𝛼𝜇𝑔𝛽𝜈 + 𝑔𝛽𝜇𝑔𝛼𝜈 −

2

𝐷 − 2
⋅ 𝑔𝜇𝜈𝑔𝛼𝛽]       (3) 

where 𝐷 is the number of spacetime dimensions, 𝑃2 is 
the transverse and traceless spin 2 projection 

operator and 𝑃𝑠
0  is a spin zero scalar multiplet. The 

graviton propagator for (Anti) de Sitter space is 

𝐺 =
𝑃2

2𝐻2 −◻
+

𝑃𝑠
0

2(◻ +4𝐻2)
, 

where 𝐻 is the Hubble constant. Note that upon taking 

the limit 𝐻 → 0  and ◻→ −𝑝2 , the 𝐴𝑑𝑆  propagator 
reduces to the Minkowski propagator [2]. 

As shown in formulas (1) and (2), further, we are 
not interested in numerator in the form (3). Thus, the 
Newtonian potential for a body with mass 𝑀 is given 
by the formula: 

𝑈𝑁(𝑟) =
𝐺 ⋅ 𝑀

2𝜋2
∫
𝑑3𝑝

𝑝→
2 𝑒

𝑖𝑝→⋅𝑟→ =
𝐺𝑀

𝑟
,         (4)  

Where  

𝐺 = 6.6743 × 10−11
𝑚3

𝑘𝑔 ⋅ 𝑠𝑒𝑐2
          (5) 

is the Newtonian constant. 

𝐷 -dimensional case the formulas (1) and (4) takes 
the form 

𝑈𝐷(𝑟) = 𝐴∫
𝑑𝐷−1𝑝

𝑝→
2 𝑒𝑖𝑝𝑟              (6) 

where 𝐴 is a some constant of normalization, 

𝑑𝐷−1𝑝 =  𝑝𝐷−2𝑑𝑝𝑑𝜑sinθ1𝑑𝜃1 

⋅ sin2𝜃2𝑑𝜃2…  sin
𝐷−3𝜃𝐷−3𝑑𝜃𝐷−3 = 

= 𝑝𝐷−2𝑑𝑝𝑑𝜑∏sin𝑘
𝐷−3

𝑘=1

𝜃𝑘𝑑𝜃𝑘,        (7) 

here 

(0 < 𝑝 < ∞, 0 < 𝜑 < 2𝜋, 0 < 𝜃𝑘 < 𝜋), 

𝑝𝑟 = 𝑝1𝑥1 + 𝑝2𝑥2 +⋯𝑝𝐷−1 ⋅ 𝑥𝐷−1,

𝑝2 = 𝑝1
2 + 𝑝2

2 +⋯+ 𝑝𝐷−1
2 .

}         (8) 

Here, we use the following general integrals [3]: 

∫ 𝑑
1

0

𝑥cos(𝑎𝑥)(1 − 𝑥2)𝜈−
1
2

=
√𝜋

2
(
2

𝑎
)
𝜈

𝛤 (𝜈 +
1

2
) 𝐽𝜈(𝑎)          (9) 

and 

∫ 𝑑
∞

0

𝑥𝑥𝜇𝐽𝜈(𝑎𝑥) = 2
𝜇𝑎−𝜇−1

𝛤 (
1
2
+
1
2
𝜈 +

1
2
𝜇)

𝛤 (
1
2
+
1
2
𝜈 −

1
2
𝜇)
          (10) 

−𝑅𝑒𝜈 − 1 < 𝑅𝑒𝜇 <
1

2
,   𝑎 > 0, 

where 𝐽𝜈(𝑥) is the Bessel function of the order 𝜈. 

After some calculations we obtain universal formula 
for the Newtonian potential and its corresponding force 
between two bodies with masses 𝑀1 and 𝑀2 for any 𝐷 
-dimensions [4]: 

𝑈𝐷
𝑁(𝑟𝐷) = −𝐺 ⋅ 𝐴

𝐷−4
𝑀1
𝑟𝐷
𝐷−3 ,       (11) 

𝐹
→
𝐷

𝑁
(𝑟𝐷) =

1

𝐷 − 3
𝛻
→
𝐷 𝑈𝐷

𝑁(𝑟𝐷)𝑀1 ⋅ 𝑀2

= 𝐺𝐴𝐷−4
𝑀1 ⋅ 𝑀2

𝑟𝐷
𝐷−2 𝑛→,        (12) 

Here point of view of dimensional argument and 
conserving invariant forms of (11), (12) there exists 
one unique universal parameter named the Planck 
length, we call it the Planck length 

𝐴 = 𝐿𝑃𝑙 = √𝐺ℏ/𝑐
3.            (13) 

Thus, summation of all constributions to the 
Newtonian potential due to any spacetime dimensions 
is given by the formula: 

𝑈𝑓𝑢𝑙𝑙
𝑁 (𝑟) = −

𝐺

4𝜋

1

𝑟
∑(

𝐿𝑃𝑙
𝑟
)
𝑛∞

𝑛=0

= −
𝐺

4𝜋

1

𝑟

1

1 − 𝐿𝑃𝑙/𝑟
 

= −
𝐺

4𝜋

1

𝑟 − 𝐿𝑃𝑙
 .               (14) 
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From this formula, we see that singularity of the 

Newtonian potential at the point 𝑟 = 0 is changed to 
the point 𝑟 = 𝐿𝑃𝑙  and therefore after the Planck area 
the attractive nature of the Newtonian law becomes 
repulsive one. 

Notice that similar situation are valid for the 
Coulomb law due to any dimensional spacetime and 
its potential form takes the form 

𝑈𝑓𝑢𝑙𝑙
𝐶 (𝑟) =

𝑒

4𝜋

𝐺

4𝜋

1

𝑟
∑(

𝐿𝑃𝑙
𝑟
)
𝑛∞

𝑛=0

=
𝑒

4𝜋

1

𝑟 − 𝐿𝑃𝑙
          (15) 

Now we turn to calculate the Yukawa potential in any 
D-dimensional spacetime and for this case the 
formula (6) takes the form 

𝑈𝐷
𝑌(𝑟) = 𝐶∫

𝑑𝐷−1𝑝

𝑚2 + 𝑝2
𝑒𝑖𝑝𝑟 ,              (16) 

where 𝑐  is a some normalization constant. For 
calculation purpose, we use the formula (9) and the 
following integral form [3]: 

∫ 𝑑
∞

0

𝑥
𝐽𝜈(𝑏𝑥)𝑥

1+𝜈

(𝑎2 + 𝑏2)1+𝜇
=

𝑎𝜈−𝜇𝑏𝜇

2𝜇𝛤(1 + 𝜇)
𝐾𝜈−𝜇(𝑎𝑏),         (17) 

where 

−1 < 𝑅𝑒𝜈 < 𝑅𝑒 (2𝜇 +
3

2
) ,    𝑎, 𝑏 > 0 

and 𝐾𝜈(𝑥) is the Mack’Donald function. 

After some calculations, we have 

𝑈𝐷
𝑌(𝑟𝐷) = 𝑔𝐷

𝑌 (
𝑚

𝑟𝐷
)
(
𝐷−3
2 )

𝐾𝐷−3
2
(𝑚𝑟𝐷),          (18) 

here 𝑔𝐷
𝑌 is coupling constants for the Yukawa theory. 

For our usual four-dimensional spacetime 𝐷 = 4 , 
one gets the Yukawa potential form (2), since 

𝐾1/2(𝑟) = √
𝜋

2𝑟
𝑒−𝑟                     (19) 

Notice that the Newtonian and the Coulomb potentials 

𝑈𝐷
𝑁,𝐶(𝑟) ∼ 𝑐𝑜𝑛𝑠𝑡 ⋅

1

𝑟𝐷−3
               (20) 

depending on spacetime dimensions satisfy the 
Laplacian equation 

𝛥𝐷𝑈𝐷
𝑁,𝐶(𝑟𝐷) = 0,                          (21) 

where 

𝛥𝐷 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +⋯+

𝜕2

𝜕𝑥𝐷−1
2  

and 

𝑟𝐷 = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝐷−1
2 .                   (22) 

B. High-Dimensional Spacetime and Changing 
Propagators of Force Carrying Particles 

In previous section, we have been shown that 
potential forces between different fields are changed 
depending on numbers of spacetime dimensions. It 
means that force carrying particle’s propagator are 
also must be changed due to high dimensional 
spacetime from lower dimensional case. First, let us 
consider five-dimensional space-time which consists 
from addendum (or addition) of included four-and 

covering one-dimensional spaces, like 𝐷4 ∪ 𝐷1 , in 
other words, four-dimensional space is embodied into 
five-dimensions and its co-ordinate points of events 
are denoted by symbols: 

𝑥𝜇 = (𝑥0 = 𝑐𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑥5 = 𝐿𝑃𝑙𝑎 𝑛
→),           (23) 

where 𝑎  is dimensionless parameter or number of 

lattice in fifth-direction and 𝑛→  is an arbitrary unit 
directing vector. Then the metric tensor is 

𝑔𝜇𝜈 =

(

 
 

1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1)

 
 
              (24) 

and an interval reads 

𝑆2 = 𝑔𝜇𝜈𝑥𝜇𝑥𝜈 = 𝑥0
2 − 𝑥→

2
− 𝐿𝑃𝑙

2 𝑎2.        (25) 

Without loss of generality, if we assume 𝑎 = 1, in (23) 
then such type of five-dimensional spacetime was 
considered by Markov [5]. D’Alembertian in five-
dimensional spacetime takes the form 

𝛥5 = −
1

𝑐2
𝜕2

𝜕𝑡2
+

𝜕2

𝜕 𝑥→
2 +

𝜕2

𝐿𝑃𝑙
2 𝜕𝑎2

.          (26) 

We propose following type of wave equation for a 
scalar particle 

(𝛥5 −𝑚
2)𝛷(𝑥𝜇) = 0.                 (27) 

Then plane-wave solution of this equation is given by 

𝛷(𝑥𝜇) = 𝐴 ⋅ 𝑒𝑖𝑥𝑖⋅𝑝
𝑖−𝑖𝑝5𝑥5             (28) 

where 

𝑝5 = √𝑚2 − 𝑝2 = √𝑚2 − 𝑝0
2 + 𝑝→

2
, 𝑛→ ⋅ 𝑛→ = 1, 

𝑖𝑥𝜇𝑝
𝜇 = 𝑖𝑥0𝑝

0 − 𝑖 𝑥→ 𝑝→− 𝑖√𝑚2 − 𝑝2𝐿𝑃𝑙𝑎 𝑛
→           (29) 

Then direct calculation for equation (27) gives 

𝑝0
2 − 𝑝→

2
− (𝑚2 − 𝑝0

2 + 𝑝→
2
) − 𝑚2 = 0, 

or 

2 (𝑝0
2 − 𝑝→

2
−𝑚2) = 0              (30) 

http://www.jmest.org/
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It means that motion of equation for free particles 
does not charge in five-dimensional spacetime case, 
where 

𝐸 = ±√𝑚2 + 𝑝→
2
 

is valid as for Klein-Gordon case. 

An inverse Fourier transforms with respect to 
formulas (1), (2) and (6) for photon, graviton and scalar 
particle propagators lead to those modifications. 

For example, for the photon propagator in static 
limit in the momentum space one gets 

1

𝑝→
2 ⇒ 𝐷𝑔

𝛾
(𝑝→

2
) = 𝐶∫

𝑑𝑟 ⋅ 𝑟3

𝑟2

∞

0

∫ 𝑑
2𝜋

0

𝜑 ×

∫ 𝑑
𝜋

0

𝜃sinθ𝑒𝑖𝑝𝑟cosθ∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝐿𝑃𝑙
√𝑝→

2
cosθ1 ,

       (31) 

where 𝐶  is a normalization constant. Then direct 
calculations gives [6]: 

𝐷𝑔
𝛾
(𝑝→

2
) =

1

𝑝→
2 ×

𝐽1 (√𝑝
→2

𝐿𝑃𝑙)

√𝑝→
2
𝐿𝑃𝑙

.            (32) 

In formula (31) we have used expression (29) with 

𝑎 = 1, where 𝑛→ = cosθ1  is the directed cosine. Last 
integral reads 

𝐼3 = ∫ 𝑑
𝜋

0

𝜃1 ⋅ sin
2𝜃1𝑒

𝑖𝑝𝐿𝑃𝑙cosθ1 = ∫ 𝑑
1

−1

𝜆√1 − 𝜆2𝑒𝑖𝑝𝐿𝑃𝑙⋅𝜆 = 

2∫ 𝑑
1

0

𝜆√1 − 𝜆2cos(𝑝𝐿𝑃𝑙𝜆) =
𝜋

𝑝𝐿𝑝𝑙
𝐽1(𝑝𝐿𝑃𝑙).          (33) 

Here 𝐽1(𝑥) is the Bessel function of the order 1. 

It is obviously that in formula (31) we have used the 
following integrals: 

𝐼1 = ∫ 𝑑
𝜋

0

𝜃 ⋅ sinθ ⋅ 𝑒𝑖𝑝𝑟cosθ = 2
sin𝑝𝑟

𝑝𝑟
,           (34) 

𝐼2 = ∫ 𝑑
𝜋

0

𝑟sin𝑝𝑟 =
1

𝑝
.                   (35) 

Notice that for a scalar particle it should be change 

𝑝 = |𝑝→| → √𝑚2 + 𝑝→
2
 and last integral (35) takes the 

form 

𝐼2
𝑌 = 

1

𝑝
∫ 𝑑𝑟 𝑒{−𝑚𝑟} sin 𝑝𝑟
∞

0

=
1

𝑝
⋅

1

√{𝑚2 + 𝑝⃗2}
𝑠𝑖𝑛 (arctan

𝑝

𝑚
 )

=  
1

𝑚2 + 𝑝⃗2
,                 (36) 

where 

𝑎𝑟𝑐𝑡𝑔 𝑥 = 𝑎𝑟𝑐𝑡𝑔 𝑥 =  𝑎𝑟𝑐𝑠𝑖𝑛 
𝑥

√{1+𝑥2}
 . 

Finally, photon and graviton propagators in usual four 
dimensional spacetime, which are arisen from 
intermediate five-dimensional space take the forms 

(𝑝→
2
→ −𝑝2 = −𝑝0

2 + 𝑝→
2
): 

𝐷𝜇𝜈
𝑔 (𝑥) =

𝑔𝜇𝜈
(2𝜋)4𝑖

∫ 𝑑4𝑝
𝑉1(−𝑝

2𝐿𝑃𝑙
2 )

−𝑝2 − 𝑖𝜀
𝑒𝑖𝑝𝑥,         (37) 

𝐷𝜇𝜈,𝜌𝛿
𝑔 (𝑥) = [𝑔𝜇𝜌𝑔𝜈𝛿 + 𝑔𝜈𝜌𝑔𝜇𝛿 −

2

𝐷 − 2
𝑔𝜇𝜈𝑔𝜌𝛿] ×

1

(2𝜋)4𝑖
∫ 𝑑4𝑝

𝑉1(−𝑝
2𝐿𝑃𝑙
2 )

−𝑝2 − 𝑖𝜀
𝑒𝑖𝑝𝑥.              (38)

 

For the Yukawa potential case corresponding scalar 
particle propagator acquires the form (See: also 
Section b): 

𝐷𝑚
𝑌 (𝑥) =

1

(2𝜋)4𝑖
∫ 𝑑4𝑝

𝑉𝑚(−𝑝
2𝐿𝑃𝑙
2 )

𝑚2 − 𝑝2 − 𝑖𝜀
,                 (39) 

Here, see formula (43). 

For form factors 𝑉(−𝑝2𝐿𝑃𝑙
2 )  and 𝑉𝑚(−𝑝

2𝐿𝑃𝑙
2 )  the 

following Mellin representations are valid 

𝑉(−𝑝2𝐿𝑃𝑙
2 )

=
1

4𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
(−

𝑝2𝐿𝑃𝑙
2

4
)
𝜉

sinπξ ⋅ Γ(1 + 𝜉) ⋅ 𝛤(2 + 𝜉)
,         (40) 

𝑉𝑚(−𝑝
2𝐿𝑃𝑙
2 )

=
1

4𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
[(
𝑚2 − 𝑝2

4
) 𝐿𝑃𝑙

2 ]
𝜉

sinπξ ⋅ Γ(1 + 𝜉) ⋅ 𝛤(2 + 𝜉)
,        (41) 

Now let us calculate the scalar particle propagator 
leading to formulas (39) and (41). 

Thus, for the Yukawa potential case, when four 
dimensional space is embodied into five dimensions 

𝑈4
𝑌(𝑟) =

𝑔4
𝑟
𝑒−𝑚𝑟 = 𝑔′5 (

𝑚

𝑟
)
1/2

𝐾1/2(𝑚𝑟) 

and therefore 

𝐷𝑠
𝑌 = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟 ⋅ 𝑟
3
2𝐾1

2
(𝑚𝑟)

sin𝑝𝑟

𝑟
×

∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖√𝑝→
2
+𝑚2𝐿𝑃𝑙cosθ1

=
𝑐𝑜𝑛𝑠𝑡

𝑝
⋅ √𝜋(2𝑚)

1
2𝛤 (

3

2
+
1

2
) 𝑝 (𝑚2 + 𝑝→

2
)
−1

×

𝜋

𝐽1 (√𝑚
2 + 𝑝→

2
𝐿𝑃𝑙)

√𝑚2 + 𝑝→
2
𝐿𝑃𝑙

 .               (42)

 

Thus, after normalization, we have 
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𝐷𝑠
𝑌(𝑝) =

1

𝑚2 + 𝑝→
2 ⋅

𝐽1 (√𝑚
2 + 𝑝→

2
𝐿𝑃𝑙)

√𝑚2 + 𝑝→
2
𝐿𝑃𝑙

             (43) 

as it should be. 

It is important to notice that the form of the Yukawa 
propagator in the momentum space has universal 
character independing on numbers of spacetime 
dimensions in the static limit: 

1

𝑚2 − 𝑝→
2
− 𝑖𝜖

⇒
1

𝑚2 + 𝑝→
2 = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟𝑟𝐷−2 (
𝑚

𝑟
)

𝐷−3
2
×

𝐾𝐷−3
2
(𝑚𝑟)

𝐽𝐷−3
2
(𝑝𝑟)

(𝑝𝑟)
𝐷−3
2

,             (44)

 

where we have used the following integral [3]: 

∫ 𝑑
∞

0

𝑥𝑥𝐾𝜈(𝑚𝑥)𝐽𝜈(𝑝𝑥) =
𝑝𝜈

𝑚𝜈 (𝑚2 + 𝑝→
2
)
,           (45) 

and 

𝐷 = 5,6, … ,                𝑝→
2
= 𝑝1

2 + 𝑝2
2 +⋯+ 𝑝𝐷−1

2 . 

 

C. Calculation of Formulas in Any Spacetime 
Dimensions 

a. Photon and graviton cases: 
 

1) Let 𝐷 = 6, then formula (31) takes the form: 

𝐷6
𝑌 = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟
𝑟4

𝑟3
∫ 𝑑
2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃 ⋅ sinθ ×

∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝑝𝑟cosθ1∫ 𝑑
𝜋

0

𝜃2sin
3𝜃2𝑒

𝑖𝑝𝐿𝑃𝑙cosθ2 ,

 

 where 

𝑈𝐶(𝑟) ∼
1

𝑟3
. 

 Then 

 𝐼1 = ∫ 𝑑
𝜋

0
𝜃1sinθ1√1 − cos

2𝜃1𝑒
𝑖𝑝𝑟cosθ1 = 

2∫ 𝑑
1

0

𝑥√1 − 𝑥2cos(𝑝𝑟𝑥) = 2 ⋅
𝜋

2
(
2

𝑝𝑟
)𝛤 (1 +

1

2
) 𝐽1(𝑝𝑟).       (46) 

 So that 

𝐼2 =
1

𝑝
∫ 𝑑

∞

0

𝑟 ⋅ 𝑟 ⋅
1

𝑟
𝐽1(𝑝𝑟) =

1

𝑝2
 

 as it should be. 

 Thus 

 

𝐼3 = ∫ 𝑑
𝜋

0
𝜃2sin

3𝜃2𝑒
𝑖𝑝𝐿𝑃𝑙cosθ2 =

2∫ 𝑑𝑥
1

0
(1 − 𝑥2)cos(𝑝𝐿𝑃𝑙𝑥)

= √𝜋 (
2

𝑝𝐿𝑃𝑙
)
3/2

𝛤(2)𝐽3/2(𝑝𝐿𝑃𝑙).

                   (47) 

 Finally, after normalization, we have 

𝐷6
𝛾
(𝑝→

2
) =

1

𝑝→
2

𝐽3/2(𝑝𝐿𝑃𝑙)

(𝑝𝐿𝑃𝑙)
3/2

               (48) 

2) Let 𝐷 = 7, then we have similarity: 

𝐷7
𝛾
(𝑝→

2
) = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟
𝑟5

𝑟4
∫ 𝑑
2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃 ⋅ sinθ∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1 ×

∫ 𝑑
𝜋

0

𝜃2sin
3𝜃2𝑒

𝑖𝑝𝑟cosθ2∫ 𝑑
𝜋

0

𝜃3sin
4𝜃3𝑒

𝑖𝑝𝐿𝑃𝑙cosθ3 ,

 

 Where 

 𝐼4 = ∫ 𝑑
𝜋

0
𝜃2sin

3𝜃2𝑒
𝑖𝑝𝑟cosθ2 = 2∫ 𝑑

1

0
𝑥(1 −

𝑥2)cos(𝑝𝑟𝑥) 

= 2 ⋅
√𝜋

2
(
2

𝑝𝑟
)
3/2

𝛤(2)𝐽3/2(𝑝𝑟), 

𝐼5 =
1

𝑝3/2
∫ 𝑑
∞

0

𝑟 ⋅ 𝑟−1/2𝐽3/2(𝑝𝑟) ⇒
1

𝑝→
2, 

𝐼6 = ∫ 𝑑
𝜋

0

𝜃3sin
4𝜃3𝑒

𝑖𝑝𝐿𝑃𝑙cosθ3 = 

2∫ 𝑑
1

0

𝑥(1 − 𝑥2)
3
2cos(𝑝𝐿𝑃𝑙𝑥) = 

√𝜋 (
2

𝑝𝐿𝑃𝑙
)
2

𝛤 (
5

2
) 𝐽2(𝑝𝐿𝑃𝑙). 

 Finally, we have as before 

𝐷7
𝛾
(𝑝→

2
) =

1

𝑝→
2

𝐽2(𝑝𝐿𝑃𝑙)

(𝑝𝐿𝑃𝑙)
2
.            (49) 

Similar calculations for any 𝐷  -space lead to final 
result 

𝐷𝐷
𝛾
(𝑝→) =

1

𝑝→
2

𝐽𝐷−3
2
(𝑝𝐿𝑃𝑙)

(𝑝𝐿𝑃𝑙)
𝐷−3
2

,        (50) 

where 𝐷 = 5,6… . 

b. The Yukawa case  

The Yukawa potential in 4-dimensional spacetime 
takes the well-known form: 

𝑈4
𝑌(𝑟) ∼

1

𝑟
𝑒−𝑚𝑟 .              (51) 

Then, 𝐷 = 4: 

𝐷4
𝑌 = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟
𝑟2

𝑟
𝑒−𝑚𝑟∫ 𝑑

2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃sinθ𝑒𝑖𝑝𝑟cosθ, 
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where 

𝐼7 = ∫ 𝑑
𝜋

0

𝜃sinθ𝑒𝑖𝑝𝑟cosθ = 2∫ 𝑑
1

0

𝑥cos(𝑝𝑟𝑥) =

2
√𝜋

2
(
2

𝑝𝑟
)
1/2

𝛤(1)𝐽1/2(𝑝𝑟) .

 

So that 

𝐼8 =
1

√𝑝
∫ 𝑑

∞

0

𝑟𝑟1/2𝐽1/2(𝑝𝑟) =
1

√𝑝

(2𝑝)1/2𝛤(1)

√𝜋 (𝑚2 + 𝑝→
2
)
, 

therefore 

𝐷4
𝛾(𝑝) =

1

𝑚2 + 𝑝→
2
.
 

In x-space, we have 

𝑈4
𝑌(𝑟) = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑝
𝑝2

𝑚2 + 𝑝2
∫ 𝑑
2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃sinθ𝑒𝑖𝑝𝑟cosθ, 

𝐼8 = 𝐼7 = √𝜋 (
2

𝑝𝑟
)
1/2

𝛤(1)𝐽1/2(𝑝𝑟). 

Thus, 

𝑈4
𝑌(𝑟) = 𝑐𝑜𝑛𝑠𝑡

1

√𝑟
∫ 𝑑

∞

0

𝑝
𝑝2

𝑚2 + 𝑝2
1

√𝑝
𝐽1/2(𝑝𝑟) = 

𝐶

√𝑟
∫ 𝑑

∞

0

𝑝
𝑝3/2

𝑚2 + 𝑝2
𝐽1/2(𝑝𝑟) = √

𝜋

2

𝐶

𝑟
𝑒−𝑚𝑟 , 

where 𝐶 is the normalization constant. 

If 𝐷 = 5, then 

𝑈5
𝑌(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ∫ 𝑑

∞

0

𝑝
𝑝3

𝑚2 + 𝑝2
∫ 𝑑
2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃sinθ ×

∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝑝𝑟cosθ1 ,

 

where 

𝐼1 = ∫ 𝑑
𝜋

0

𝜃1sinθ1√1 − cos
2𝜃1𝑒

𝑖𝑝𝑟cosθ1 = √𝜋 (
2

𝑝𝑟
)𝛤 (

3

2
) 𝐽1(𝑝𝑟), 

so that 

𝑈5
𝑌(𝑟) ∼

1

𝑟
∫ 𝑑

∞

0

𝑝
𝑝2

𝑚2 + 𝑝2
𝐽1(𝑝𝑟) ∼

𝐾1(𝑚𝑟)

𝑚𝑟
.                (52) 

Therefore 

𝐷5
𝛾(𝑝) = 𝑐𝑜𝑛𝑠𝑡 ⋅ ∫ 𝑑

∞

0

𝑟
𝑟3

𝑟
𝐾1(𝑚𝑟) ×

∫ 𝑑
2𝜋

0

𝜑∫ 𝑑
𝜋

0

𝜃sinθ∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝑝𝑟cosθ1 =
1

𝑚2 + 𝑝→
2

 

as it should be. 

Similar calculations for 𝑈6
𝑌(𝑟) give 

𝐼9 = 2∫ 𝑑
1

0

𝑥(1 − 𝑥2)cos(𝑝𝑟𝑥) = √𝜋 (
2

𝑝𝑟
)
3/2

𝛤(2)𝐽3/2(𝑝𝑟), 

and therefore 

𝑈6
𝑌(𝑟) ∼

1

𝑟3/2
∫ 𝑑

∞

0

𝑝
𝑝1+

3
2

𝑚2 + 𝑝2
𝐽3/2(𝑝𝑟) ⇒ 

𝑐𝑜𝑛𝑠𝑡 ⋅
𝐾3/2(𝑚𝑟)

(𝑚𝑟)3/2
⋅ 𝑚3.                  (53) 

For the Yukawa potential case, we have used 
integrals (17) and (45). 

Finally, for the Yukawa potential case for any D-
dimensional spacetime, we have 

𝑈𝐷
𝑌(𝑟) = 𝑐𝑜𝑛𝑠𝑡 ⋅ (

𝑚

𝑟
)

𝐷−3
2
𝐾𝐷−3

2
(𝑚𝑟)               (54) 

Now we want to calculate the Yukawa propagator for 
any D-dimensional spacetime. Thus, from (54) one 
gets: 

If 𝐷 = 5, then 

1.  

𝐷5
𝑌(𝑝) = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟
𝑟3

𝑟
𝐾1(𝑚𝑟)∫ 𝑑

2𝜋

0

𝜑 ×

∫ 𝑑
𝜋

0

𝜃 ⋅ sinθ𝑒𝑖𝑝
′𝐿𝑃𝑙 cosθ∫ 𝑑

𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝑝′𝑟cosθ1 .         (55)

 

 where 

 𝐼10 = ∫ 𝑑
𝜋

0
𝜃sinθ𝑒𝑖𝑝′𝐿𝑃𝑙cosθ = 2∫ 𝑑

1

0
𝑥cos(𝑝′𝐿𝑃𝑙𝑥) 

= 2 ⋅
√𝜋

2
(
2

𝑝′𝐿𝑃𝑙
)
1/2

𝛤(1)𝐽1/2(𝑝′𝐿𝑃𝑙) 

 and 

 𝐼11 = ∫ 𝑑
𝜋

0
𝜃1sin

3𝜃1𝑒
𝑖𝑝𝑟cosθ1 =

2∫ 𝑑
1

0
𝑥√1 − 𝑥2cos(𝑝𝑟𝑥) 

= 2
√𝜋

2
(
2

𝑝𝑟
)𝛤 (

3

2
) 𝐽1(𝑝𝑟). 

 Therefore 

𝐷𝑠
𝑌(𝑝) = 𝑐𝑜𝑛𝑠𝑡

𝐽1/2(𝑝′𝐿𝑃𝑙)

√𝑝′𝐿𝑃𝑙

1

𝑝
∫ 𝑑

∞

0

𝑟𝑟𝐾1(𝑚𝑟)𝐽1(𝑝𝑟), 

 here 

∫ 𝑑
∞

0

𝑟𝑟𝐾1(𝑚𝑟)𝐽1(𝑝𝑟) =
𝑝

𝑚 (𝑚2 + 𝑝→
2
)
. 

 So that 

𝐷5
𝑌(𝑝) =

1

𝑚2 + 𝑝→
2

𝐽1/2(𝑝′𝐿𝑃𝑙)

√𝑝′𝐿𝑃𝑙
,              (56) 
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 where 

𝑝′ = √𝑚2 + 𝑝2. 

2. The case 𝐷 = 6 reads 

𝐷6
𝑌(𝑝) = 𝑐𝑜𝑛𝑠𝑡∫ 𝑑

∞

0

𝑟
𝑟4

𝑟3/2
𝐾3/2(𝑚𝑟)∫ 𝑑

2𝜋

0

𝜑 ×

∫ 𝑑
𝜋

0

𝜃 ⋅ sinθ∫ 𝑑
𝜋

0

𝜃1sin
2𝜃1𝑒

𝑖𝑝′𝐿𝑃𝑙cosθ1∫ 𝑑
𝜋

0

𝜃2sin
3𝜃2𝑒

𝑖𝑝𝑟cosθ2 .

 

 Here we use integral forms 𝐼1 (46) and 𝐼3 (47). 

 Then 

𝐷6
𝑌(𝑝) = 𝑐𝑜𝑛𝑠𝑡 ⋅

𝐽1(𝑝′𝐿𝑃𝑙)

𝑝′𝐿𝑃𝑙
⋅
1

𝑝3/2
×

∫ 𝑑
∞

0

𝑟
𝑟4

𝑟3/2
⋅
1

𝑟3/2
𝐾3/2(𝑚𝑟)𝐽3/2(𝑝𝑟).

 

 Here 

∫ 𝑑
∞

0

𝑟𝑟𝐾3/2(𝑚𝑟)𝐽3/2(𝑝𝑟) =
𝑝3/2

𝑚3/2 (𝑚2 + 𝑝→
2
)
. 

 Thus, after normalization we have 

𝐷6
𝑌(𝑝) =

1

𝑚2 + 𝑝→
2 ×

𝐽1(𝑝′𝐿𝑃𝑙)

𝑝′𝐿𝑃𝑙
               (57) 

Finally, analogous calculations for any D-space read 
universe formula for the Yukawa propagator in the 
static limit: 

𝐷𝐷
𝑌(𝑝) =

1

𝑚2 + 𝑝→
2

𝐽𝐷−4
2
(𝑝′𝐿𝑃𝑙)

(𝑝′𝐿𝑃𝑙)
𝐷−4
2

             (58) 

where 𝑝′ = √𝑚2 + 𝑝→
2
. 

D. Euclidean Propagators in D-dimensions 

a. Local Euclidean Propagators for Photons and 

Gravitons 

Local Euclidean propagators are given by the 
universe formula for any D-dimensions: 

𝐷𝐷
𝛾,𝑔
=

1

(2𝜋)𝐷
𝛺(𝐷 − 1)∫ 𝑑

∞

0

𝑝
𝑝𝐷−1

𝑝2
×

∫ 𝑑
1

0

𝜃sin𝐷−2𝜃𝑒𝑖𝑝𝑟cosθ,

               (59) 

where 𝛺(𝐷 − 1) is the area of a unit sphere in the D-
dimensional volume, which is given by the universal 
formula 

𝛺(𝐷 − 1) =
2𝜋(𝐷−1)/2

𝛤 (
𝐷 − 1
2

)
.              (60) 

To get this formula we use the following integral 
formulas 

∫ 𝑑
𝜋

0

𝜃(sinθ)𝑘 = √𝜋
𝛤 (
1 + 𝑘
2

)

𝛤 (
2 + 𝑘
2

)
.              (61) 

In particular, if 𝐷 = 3 , then 𝛺(2) =
2𝜋(3−1)/2

𝛤(
3−1

2
)
= 2𝜋.  For 

other cases: 

𝛺(3) = 4𝜋    if      𝐷 = 4

𝛺(4) = 2𝜋2     if      𝐷 = 5

𝛺(5) =
8

3
𝜋2    if      𝐷 = 6

 

and so on. 

In the integral formula (59) we have 

𝐼1 = ∫ 𝑑
𝜋

0

𝜃sin𝐷−2𝜃𝑒𝑖𝑝𝑟cosθ = 2∫ 𝑑
1

0

𝑥(1 − 𝑥2)
(𝐷−3)
2 ⋅ cos𝑝𝑟𝑥

= 2
√𝜋

2
(
2

𝑝𝑟
)

𝐷−2
2
𝛤 (
𝐷 − 2

2
+
1

2
) 𝐽𝐷−2

2
(𝑝𝑟) .           (62)

 

 

Now we use other integral formula: 

𝐼2
𝛾
= ∫ 𝑑

∞

0

𝑝
𝑝𝐷−1

𝑝2𝑝
𝐷−2
2

𝐽𝐷−2
2
(𝑝𝑟)

= 2
𝐷−4
2 𝑟−1−

𝐷−4
2 𝛤 (

𝐷 − 2

2
)         (63) 

Finally, we have universal formula for local photon 
and graviton fields: 

𝐷𝐷
𝛾,𝑔(𝑟) = √𝜋

𝛺(𝐷 − 1)

(2𝜋)𝐷
2𝐷−3

⋅ 𝛤 (
𝐷 − 1

2
)𝛤 (

𝐷 − 2

2
) 𝑟2−𝐷,              (64) 

where 𝐷 = 4,5,6, …  are numbers of D-dimensional 
spacetime. This formula is the D-dimensional local 
photon and graviton propagators in x-space, where 

𝑟 = √𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝐷
2 , 𝑥1 = 𝑖𝑥0. 

b. Local Euclidean propagator for a scalar 

particle 

Extersion above formulas for a scalar particle are 
obviously. Indeed 

𝐷𝐷
𝑌(𝑟) =

1

(2𝜋)𝐷
𝛺(𝐷 − 1)∫ 𝑑

∞

0

𝑝
𝑝𝐷−1

𝑚2 + 𝑝2
×

∫ 𝑑
1

0

𝜃sin𝐷−2𝜃𝑒𝑖𝑝𝑟cosθ.                     (65)

 

In this case, integral (62) is the same and while 
integral (63) takes the form 

𝐼2
𝑌 = ∫ 𝑑

∞

0

𝑝
𝑝𝐷/2

𝑚2 + 𝑝2
𝐽𝐷−2
2
(𝑝𝑟)

= 𝑚
𝐷−4
2 𝐾𝐷−2

2
(𝑚𝑟).                 (66) 
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Therefore, one gets: 

𝐷𝐷
𝑌(𝑟)

= √𝜋
𝛺(𝐷 − 1)

(2𝜋)𝐷
𝛤 (
𝐷 − 1

2
) (
2𝑚

𝑟
)

𝐷−2
2
𝐾𝐷−2

2
(𝑚𝑟)          (67) 

c. Nonlocal Euclidean Propagators for Photons 

and Gravitons 

For this case, the following universal formulas are 
valid: 

𝐷𝐿𝑃𝑙
𝛾,𝑔(𝑟) = √𝜋

𝛺(𝐷 − 1)

(2𝜋)𝐷
(
2

𝑟
)

𝐷−2
2
𝛤 (
𝐷 − 1

2
)

1

(𝐿𝑃𝑙)
𝐷−3
2

×

∫ 𝑑
∞

0

𝑝
𝑝𝐷−1

𝑝2 ⋅ 𝑝
𝐷−2
2

⋅

𝐽𝐷−3
2
(𝑝𝐿𝑃𝑙)

(𝑝)
𝐷−3
2

𝐽𝐷−2
2
(𝑝𝑟).               (68)

 

Now we want to calculate the following integral: 

𝐼3 = ∫ 𝑑
∞

0

𝑝𝑝−1/2𝐽𝜈(𝑝𝑟)𝐽𝜈−1/2(𝑝𝐿𝑃𝑙),              (69) 

where 𝜈 = (𝐷 − 2)/2. By using the integral form [3], 
one gets: 

𝐼3 =

{
 
 
 
 
 

 
 
 
 
 1

√2𝜋

1

√𝐿𝑃𝑙
(
𝑟

𝐿𝑃𝑙
)

𝐷−2
2 𝛤 (

𝐷 − 2
2

)

𝛤 (
𝐷
2
)

𝐹 (
𝐷 − 2

2
,
1

2
; 𝐷;

𝑟2

𝐿𝑃𝑙
2 ) ,

where0 < 𝑟 < 𝐿𝑃𝑙

1

√2𝐿𝑃𝑙

𝛤 (
𝐷 − 2
2

)

𝛤 (
𝐷 − 1
2

)
,  for  𝑟 = 𝐿𝑃𝑙

1

√2𝑟
(
𝐿𝑃𝑙
𝑟
)

𝐷−3
2 𝛤 (

𝐷 − 2
2

)

𝛤 (
𝐷 − 1
2

)
𝐹 (

𝐷 − 2

2
,
1

2
; 𝐷 − 1;

𝑟2

𝐿𝑃𝑙
2 ) for 0 < 𝐿𝑃𝑙 < 𝑟,

(70) 

where 𝐹(𝛼, 𝛽, 𝛾, 𝑥) is the hypergeometric function. 

d. Nonlocal Euclidean Propagator for Scalar 

Particle with Mass 𝒎 

A Similar formula with respect to (68) holds: 

𝐷𝐿𝑃𝑙
𝑌 (𝑟) = √𝜋

𝛺(𝐷 − 1)

(2𝜋)𝐷
(
2

𝑟
)

𝐷−2
2 𝛤 (

𝐷 − 1
2

)

(𝐿𝑃𝑙)
𝐷−4
2

× 𝐼4(𝑟),     (71) 

where 

𝐼4(𝑟) = ∫ 𝑑
∞

0

𝑝
𝑝2

𝑚2 + 𝑝2
𝐽𝜈(𝑝𝑟)𝐽𝜈−1(𝑝𝐿𝑃𝑙).           (72) 

Here 𝜈 = (𝐷 − 2)/2. We use the integral formula [3], 
one gets 

𝐼4(𝑟) = 𝑚𝐼𝐷−4
2
(𝑚𝐿𝑃𝑙)𝐾𝐷−2

2
(𝑚𝑟).                     (73) 

Finally, we have 

𝐷𝐿𝑃𝑙
𝑌 (𝑟) = √𝜋

𝛺(𝐷 − 1)

(2𝜋)𝐷
(𝑚𝐿𝑃𝑙) (

2

𝑟𝐿𝑃𝑙
)

𝐷−2
2
×

𝐼𝐷−4
2
(𝑚𝐿𝑃𝑙)𝐾𝐷−2

2
(𝑚𝑟).

         (74) 

Notice that physical formulas in any D-dimensional 
spacetime have universal and beautiful properties. 

E. Hypothesis of the Planck Regularization 
Procedure 

Thus, in our approach force carrying photon, graviton 

and 𝑊±, 𝑍0 -type spin 1 vectors, and also scalar 
particle’s propagators in any D-dimensions of 
spacetime with fundamental length named the Planck 
length take the forms: 

𝐷𝜇𝜈
𝛾 (𝑥𝐷) =

𝑔𝜇𝜈

(2𝜋)𝐷𝑖
∫ 𝑑𝐷𝑝𝑒𝑖𝑝𝑥

𝑉(−𝑝𝐷
2𝐿𝑃𝑙

2 )

−𝑝𝐷
2 − 𝑖𝜖

,         (75) 

𝐷𝜇𝜈,𝜌𝛿
𝑔 (𝑥𝐷) =

𝛥𝜇𝜈,𝜌𝛿
(2𝜋)𝐷𝑖

∫ 𝑑𝐷𝑝𝑒𝑖𝑝𝑥
𝑉(−𝑝𝐷

2𝐿𝑃𝑙
2 )

−𝑝𝐷
2 − 𝑖𝜖

,         (76) 

for photon and graviton fields; 

𝐷𝑚(𝑥𝐷) =
1

(2𝜋)𝐷𝑖
∫ 𝑑𝐷𝑝𝑒𝑖𝑝𝑥

𝑉𝑚(−𝑝𝐷
2𝐿𝑃𝑙

2 )

𝑚2 − 𝑝𝐷
2 − 𝑖𝜖

,       (77) 

for scalar particles; 

𝐷𝜇𝜈
𝑚 (𝑥𝐷) =

1

(2𝜋)𝐷𝑖
∫ 𝑑𝐷𝑝𝑒𝑖𝑝𝑥 (𝑔𝜇𝜈

−
𝑝𝜇𝑝𝜈

𝑚2
)
𝑉𝑚(−𝑝𝐷

2𝐿𝑃𝑙
2 )

𝑚2 − 𝑝𝐷
2 − 𝑖𝜖

,             (78) 

for spin one massive vector 𝑊±, 𝑍0-bosons, which are 
carrying electro-weak interactions. Here, formfactors 

𝑉(−𝑝𝐷
2𝐿𝑃𝑙

2 )

=
1

2𝜆
1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
(−

1
4
𝑝𝐷
2𝐿𝑃𝑙

2 )
𝜉

sinπξΓ(1 + 𝜉)𝛤(𝜆 + 𝜉 + 1)
,            (79) 

𝑉𝑚(−𝑝𝐷
2𝐿𝑃𝑙

2 )

=
1

2𝜆𝑖

1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
[
(𝑚2 − 𝑝𝐷

2)𝐿𝑃𝑙
2

4
]
𝜉

sinπξΓ(1 + 𝜉)𝛤(𝜆1 + 𝜉 + 1)
        (80) 

satisfy the Mellin representations. Here 

𝑖𝑝𝑥 = 𝑖𝑝0𝑥0 − 𝑖𝑝1𝑥1 −⋯− 𝑖𝑝𝐷−1𝑥𝐷−1,

𝑝𝐷
2 = 𝑝0

2 − 𝑝2
2 −⋯− 𝑝𝐷−1

2 , 0 < 𝛽 < 1,

𝜆 =
𝐷 − 3

2
, 𝜆1 =

𝐷 − 4

2
, 𝐷 = 5,6,7, … ,

 

respectively. 

Notice that due to formfactors (79) and (80) which 
are analytic functions on the left hand complex plane 
and there are no poles there, all Feynman diagrams 
(expect vacuum polarization ones which are 
regularized by using D-dimensional procedure [7]) for 
electromagnetic, electro-weak and gravitational 
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interactions between elementary particles, and also for 
self-interactions of scalar particles are finite and free 
from ultraviolet divergences. Thus, we arrive at the 
nonlocal quantum field theory developed by Dubna 
group due to Efimov [8] and Blokhintsev [9]. 

In this nonlocal theory, force carrying boson fields, 
like photons, gravitons, 𝑊±, 𝑍0 -bosons and so on 
became nonlocal and their causal or Green functions 
in the S-matrix are determined by above formulas (75)-
(78) with form factors (79) and (80). 

Thus, vacuum expectations of T-product of these 
fields are given by formulas: 

⟨0|𝑇{𝐴𝜇
𝐿𝑃𝑙(𝑥)𝐴𝜈

𝐿𝑃𝑙(𝑦)}|0⟩ =
1

𝑖
𝐷𝜇𝜈
𝐿 (𝑥 − 𝑦),

⟨0|𝑇{𝐺𝜇𝜈
𝐿 (𝑥)𝐺𝜌𝛿

𝐿 (𝑦)}|0⟩ =
1

𝑖
𝛥𝜇𝜈,𝜌𝛿𝐷0

𝐿(𝑥 − 𝑦),

⟨0|𝑇{𝑊𝜇
𝐿(𝑥)𝑊𝜈

𝐿(𝑦)}|0⟩ =
1

𝑖
𝐷𝑚,𝜇𝜈
𝐿 (𝑥 − 𝑦), (𝐿 = 𝐿𝑃𝑙)

    (81) 

and so on. 

Meanwhile, as usual all fermionic fields are local 
and those causal or Green functions do not changed 
and are determined by usual expressions in the local 
theory. Indeed, if fermionic fields, for example electron 
ones are changed then the unitarity and gauge 
invariance properties of S-matrix are broken (for 
example, see Section III). 

Free and interaction Lagrangians in D-dimensional 
spacetime are constructed by means of fields 

𝛷𝑖(𝑥𝐷
𝜈),𝛹(𝑥𝐷

𝜈)  and those differentials 𝜕𝛷𝑖(𝑥𝐷
𝜇
)/𝜕(𝑥𝐷

𝜈),  

𝜕𝛹(𝑥𝐷
𝜈)/𝜕(𝑥𝐷

𝜇
) and their the general form reads: 

𝐿𝑓𝑟𝑒𝑒(𝛷
𝑖(𝑥𝐷

𝜇
), 𝜕𝛷𝑖/𝜕𝑥𝐷

𝜌
) + 𝐿𝑓𝑟𝑒𝑒(𝛹(𝑥𝐷

𝜇
), 𝜕𝛹/𝜕𝑥𝐷

𝜆)

+𝐿𝑖𝑛 (𝛹(𝑥𝐷
𝜇
), 𝛷𝑖(𝑥𝐷

𝜈)) .
 

Then S-matrix for interaction between 𝛷𝑖(𝑥𝐷
𝜇
)  and 

𝛹(𝑥𝐷
𝜈)-fields is given by the form 

𝑆 = 𝑇exp{𝑖∫ 𝑑𝐷𝑥𝑔(𝑥𝐷)𝐿𝑖𝑛 (… )},                (82) 

where we insert an adiabatic switching function 𝑔(𝑥𝐷) 
that turns the interaction on and off by hand in some 
domain 𝛤 (see Figure 1): 

 

Fig. 1. The adiabatic function 𝑔(𝑥𝐷) 

By means of 𝑔(𝑥𝐷)-function the causality condition 
is formulated due to Bogolubov and Shirkov [10]. Thus, 
we introduce an operation of "switching on" and 
"switching off" the interaction. Instead of the coupling 
constant 𝑔  , we introduce the function 𝑔(𝑥𝐷)  on the 
interval [0, 𝑔] , which characterize the intensity of 
"switching on" the interaction. Let 𝑔1(𝑥𝐷) be different 

from zero in some region 𝛤 ⊂ 𝑅𝐷  and 𝑔2(𝑥𝐷)  in 
𝛤2 ⊂ 𝑅

𝐷. Then the S-matrix of the theory satisfies the 
microcausality condition, if 

𝑆[𝑔1 + 𝑔2] = 𝑆[𝑔2]𝑆[𝑔1]               (83) 

if 𝛤2 ≳ 𝛤1, i.e. if and only if all the points of the region 𝛤2 
belong to the future cone (or to the space-like region) 

with respect to all points of the region 𝛤1 . The 
condition (83) can be written in the differential form: 

𝑅(𝑥, 𝑦) =
𝛿

𝛿𝑔(𝑥)
(
𝛿𝑆

𝛿𝑔(𝑦)
𝑆+) = 0                (84) 

for 𝑥 ≤ 𝑦 . This relation represents a formulation of 
causality in the differential form [10]. 

Roughly speaking our approach to elimination of 
ultraviolet divergences in S-matrix by using concept of 
the fundamental length due to high-dimensional space-
time is called gravitational effect regularization of the 
quantum field theory, because the Newtonian or 
gravitational constant 𝐺  is involved in the Planck 
length’s expression due to the formula (13). 

Notice that the propagators of gluons and those T-
products or Green functions in quantum 
chromodynamics are also defined by the similar 
formulas (75)-(78) and (81). In conclusion, we see that 
all these force carrying bosons fields 𝐵(𝑥𝐷) in any D-
dimensional space-time became nonlocal and are 
given by the generalized operator functions 𝑀(◻ 𝐿𝑃𝑙

2 ) 
or 𝑀𝑚((◻ −𝑚2)𝐿𝑃𝑙

2 ) depending on mass value: 

𝐵𝑙𝑜𝑐𝑎𝑙(𝑥) ⇒ 𝐵𝑛𝑜𝑛𝑙𝑜𝑐𝑎𝑙
𝐿𝑃𝑙 (𝑥𝐷) = 𝑀(◻ 𝐿𝑃𝑙

2 )𝐵𝑙𝑜𝑐𝑎𝑙(𝑥𝐷)      (85) 

where 

𝑀(◻ 𝐿𝑃𝑙
2 ) = {

𝐽𝐷−2
2
(◻ 𝐿𝑃𝑙

2 )

(◻ 𝐿𝑃𝑙
2 )

𝐷−3
2

}

1/2

                 (86) 

for massless boson fields, and 

𝑀𝑚((◻ −𝑚2)𝐿𝑃𝑙
2 ) = {

𝐽𝐷−4
2
((◻ −𝑚2)𝐿𝑃𝑙

2 )

((◻ −𝑚2))
𝐷−3
2

}

1/2

       (87) 

for massive bosons, where 

◻= −
1

𝑐2
𝜕2

𝜕𝑡2
+
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +⋯+

𝜕2

𝜕𝑥𝐷−1
2 .           (88) 

III. NONLOCAL QUANTUM ELECTRODYNAMICS 

A. Introduction 

In previous chapter we observed that an origin of the 
divergence problem in quantum electrodynamics is 
associated with a singularity of classical electrostatic 
field. By this reason in order to avoid singularity in the 
Coulomb potential we have considered D-dimensional 
spacetime and obtained its finite modification with 
using the concept of the fundamental length. A 
modification of the Coulomb potential in D-
dimensional spacetime leads to the charge of the 
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photon propagator due to the formula (75). Aim of this 
chapter is to construct finite nonlocal quantum 
electrodynamics. The beautiful quantum 
electrodynamics (QED) developed by many physicists 
of the 20th Century [11-15] has been played a vital 
role in the construction of the finite and gauge-
invariant so-called standard model [16-17] of the 
particle physics. 

The modification of the Coulomb potential 

𝑈𝐷
𝐶(𝑟𝐷) ∼

1

𝑟𝐷
𝐷−3                       (89) 

gives rise to the nonlocal photon propagator in D-
dimensional spacetime (75). 

As an example, here we study Feynman diagrams 
in nonlocal quantum electrodynamics (NQED) in which 
the photon propagator is changed and spinor 
propagator does not modified because of conservation 
of electric charge which is broken for this case. In the 
language of Feynman diagrams if we change spinor 
propagator then the Ward-Takahashi identity does not 
valid. For simplicity of calculation purpose, we consider 
4-dimensional spacetime which is embodied into 5-
dimensional one and therefore we use the particular 
formfactor 𝐽1(𝑝𝐿𝑃𝑙)/(𝑝𝐿𝑃𝑙) for the photon propagator in 
the momentum space: 

𝐷𝛾(𝑝) =
𝑉(𝑝2𝐿𝑃𝑙

2 )

−𝑝2 − 𝑖𝜖
,              (90) 

where 

𝑉(𝑝2𝐿𝑃𝑙
2 ) =

1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
𝑣(𝜉)

sinπξ
(𝑝2𝐿𝑃𝑙

2 )𝜉            (91) 

𝑣(𝜉) =
1

2
2−2𝜉

1

𝛤(1 + 𝜉)𝛤(2 + 𝜉)
,   0 < 𝛽 < 1.        (92) 

Moreover, from formulas (68) and (70) we see that 

photon propagator 𝐷𝜇𝜈
𝛾 (𝑥) at the point 𝑥 = 0 is finite, 

and therefore, in principle, one can calculate vacuum 
fluctuation diagrams shown in Figure 2 

 

Fig. 2. Primitive Feynman diagrams for vacuum 
fluctuation 

 

Fig.3. Integration contour in the formula (91) 

Finally, we indicate one important consequence of 
the photon propagator (90) with the form - factor (91). 
If we want to calculate high order divergence integrals 
over the internal momentum variable, like 

1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
𝑣(𝜉)

sinπξ
∫𝑑4𝑝

[𝑝2𝜈]𝜉

[𝑝2 + 𝐴]𝜆
 

for any order of 𝜈 , then we can move integration 

contour in Figure 3 to the left through points 𝜉 =
−1,−2,−3,…, in desired order, since in such type of 
integrals there are no poles at these points. After 
integration result we can again move integration 
contour to the right to calculate residues at the points 
𝜉 = −3,−2,−1,…  so on. This procedure of analytic 

continuation over complex variable 𝜉 plays a vital role 
in regularization scheme. 

Lagrangian functions of the nonlocal quantum 
electrodynamics arisen from the modification of the 
Coulomb potential in D-dimensional space time with 
propagator (75) have similar structures as the local 
theory [10]. 

𝐿(𝑥) =  𝑒: 𝜓(𝑥)𝐴̂(𝑙, 𝑥)𝜓(𝑥): +𝑒(𝑍1 − 1): 𝜓(𝑥)𝐴̂(𝑙, 𝑥)𝜓(𝑥): 

−𝛿𝑚: 𝜓̅(𝑥)𝜓(𝑥): +(𝑍2 − 1): 𝜓̅(𝑥)(𝑖𝜕̂ − 𝑚)𝜓(𝑥):

(𝑍3 − 1)
1

4
: 𝐹𝜇𝜈(𝑥)𝐹

𝜇𝜈(𝑥): ,

(93) 

whe 𝐿 = 𝐿𝑃𝑙 , 𝑥𝜇 = 𝑥0, 𝑥
→ ;  𝐴̂(𝐿, 𝑥) = 𝐴𝜇(𝐿, 𝑥)𝛾𝜇 , 𝜕̂ =

𝛾𝜇
𝜕

𝜕𝑥𝜇
,  𝐴𝜇(𝐿, 𝑥) is the nonlocal photon field defined by 

the formula (85) with the generalized function (86). 

Only in our case of the nonlocal theory, 
renormalization constants 𝑍1, 𝑍2, 𝑍3, 𝛿𝑚  are finite and 
moreover 𝑍1 = 𝑍2 due to the Ward-Takahashi identity. 
Here "Chronological" pairing (or T-product) of the 
fermionic field operators of electrons has the usual 
local form: 

𝑆(𝑥 − 𝑦) = ⟨0|𝑇[𝜓(𝑥)𝜓(𝑦)]|0⟩

=
1

(2𝜋)4
1

𝑖
∫𝑑4𝑝

𝑒−𝑖𝑝(𝑥−𝑦)

𝑚 − 𝑝̂ − 𝑖𝜀
         (94) 

while "causal" function of the nonlocal electromagnetic 
field 𝐴𝜇(𝐿, 𝑥) in (93) takes the form 

𝐷𝜇𝜈
𝐿 (𝑥 − 𝑦) = 𝑔𝜇𝜈𝐷

𝐿(𝑥 − 𝑦) =

−
𝑔𝜇𝜈
(2𝜋)4𝑖

∫ 𝑑4𝑝
𝑉(−𝑝2𝐿𝑃𝑙

2 )

−𝑝2 − 𝑖𝜖
𝑒−𝑖𝑝(𝑥−𝑦)

          (95) 
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due to the formula (90). Here 𝑉(−𝑝2𝐿𝑃𝑙
2 ) is given by 

the formula (91) with using (92). In calculations of 
Feynman diagrams, we use the Feynman parametric 
formula 

1

𝑎𝑛1𝑏𝑛2
=
𝛤(𝑛1 + 𝑛2)

𝛤(𝑛1)𝛤(𝑛2)
∫ 𝑑
1

0

𝑥𝑥𝑛1−1(1 − 𝑥)𝑛2−1

×
1

[𝑎𝑥 + 𝑏(1 − 𝑥)]𝑛1+𝑛2
 

      (96) 

Notice that free Lagrangian of the electromagnetic 
field in (93) is constructed by using usual local tensor 
field: 

𝐹𝜇𝜈(𝑥) = 𝜕𝜈𝐴𝜇(𝑥) − 𝜕𝜇𝐴𝜈(𝑥). 

Due to presence of the nonlocal photon propagator 
(95) in our theory all its matrix elements 
corresponding to any Feynman diagrams are as 
usually calculated by using the high-dimensional 
regularization method of ’t Hooft and Veltman [7]. 

Now we would like to calculate some primitive 
Feynman diagrams in NQED arisen from influence 
gravity from four-dimensional spacetime which is 
embodied into five-dimensions. 

B. The Electron Self - Energy in NQED  

The complete electron propagator in NQED is given 
by the sum 

[−𝑖(2𝜋)−4𝑆𝑙(𝑝)] = [−𝑖(2𝜋)
−4𝑆(𝑝)] + 

[𝑖(2𝜋)−4𝑆(𝑝)][𝑖(2𝜋)4𝛴𝑙(𝑝)] × [−𝑖(2𝜋)
−4𝑆(𝑝)] + ⋯

       (97) 

where 

𝑆(𝑝) =
𝑚 + 𝑝

𝑚2 − 𝑝2 − 𝑖𝜀
,   𝐿𝑃𝑙 = 𝑙. 

The sum is trivial and gives 

𝑆𝐿(𝑝) = [𝑚 − 𝑝 − 𝛴𝑙 − 𝑖𝜀]
−1. 

In lowest order there is a one - loop contribution to 𝛴𝑙, 
given by in Figure 4: and corresponding expression 
takes the form: 

−𝑖: 𝜓(𝑥)𝛴𝑙(𝑥 − 𝑦)𝜓(𝑦):, 

where 

𝛴𝑙(𝑥 − 𝑦) = −𝑖𝑒
2𝛾𝜇𝑆(𝑥 − 𝑦)𝛾𝜇𝐷

𝑙(𝑥 − 𝑦).       (98) 

 

Fig.4. Diagram of Self - energy of a electron in NQED 

Passing to the momentum representation and making 
us of our regularization procedure which is connected 
introduction of the fundamental length named the 

Planck one that allows us to go to the Euclidean 

metric by using 𝑘0 → exp(𝑖𝜋/2)𝑘4, one gets (𝐿 = 𝐿𝑃𝑙): 

𝛴𝐿(𝑞) =
𝑒2

(2𝜋)4
∫ 𝑑4𝑘𝐸

𝑉(𝑘𝐸
2𝐿2)

𝑘𝐸
2 ×

𝛾𝜇
(𝐸) 𝑚− 𝑝̂𝐸 + 𝑘̂𝐸
𝑚2 + (𝑝𝐸 − 𝑘𝐸)

2
𝛾𝜇
(𝐸)

                (99) 

Here 𝑝𝐸 = (−𝑖𝑝0, 𝑝
→), 𝛾(𝐸) = (−𝑖𝛾0, 𝛾

→)  and 𝑘𝐸 =

(𝑘4, 𝑘
→
). 

Taking into account the Mellin representation (91) 
for the form - factor 𝑉(𝑘𝐸

2𝑙2)  and after some 
calculations, we have [8]: 

𝛴̃𝑙(𝑝) =
𝑒2

8𝜋

1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
1

sin2𝜋𝜉

𝑣(𝜉)(𝑚2𝑙2)𝜉

𝛤(1 + 𝜉)
𝐹(𝜉, 𝑝) 

where 

𝑣(𝜉) =
1

𝛤(2 + 2𝜉)

1

𝛤(1 + 𝜉)
⋅
1

2
2−2𝜉 , 

and 

𝐹(𝜉, 𝑝) =
1

𝛤(1 − 𝜉)
∫ 𝑑
1

0

𝑢 (
1 − 𝑢

𝑢
)
𝜉

(1 −
𝑝2

𝑚2
𝑢)

𝜉

× (2𝑚 − 𝑝𝑢)                                      (101) 

is a regular function in the half - plane 𝑅𝑒 𝜉 > −1. 

Assuming the value 𝑚2𝑙2 = 𝑚2𝐿𝑃𝑙
2  is to be small, 

one can obtain: 

𝛴̃𝑙(𝑝) =  
𝑒2

8𝜋2
∫ 𝑑
1

0

𝑢(2𝑚 − 𝑝̂𝑢)ln (1 −
𝑝2

𝑚2
𝑢) − 

−
𝑒2

16 𝜋2
[  (3 ln

1

𝑚2𝑙2
+ 3𝑣′(0) + 3𝜓(1) + 1)

+4𝑚2𝐿2𝑣(1) (ln
1

𝑚2𝑙2
−
𝑣′(1)

𝑣(1)
−
5

12

𝑝2

𝑚2
)] − 

−
𝑒2

16 𝜋2
(𝑚 − 𝑝̂) [(ln

1

𝑚2𝑙2
 𝑣′(0) + 1) − 𝑚2𝑙2𝑣(1)

𝑝2

3𝑚2
] .

    (102) 

where 𝜓(1)  is the psi-function, which is connected 
with the Euler numbers 𝐶 by the equality: 

𝜓(1) = −𝐶 = −0.57721566490…. 

We see that all calculations are finite due to 
introduction of the Planck length into the theory. 

C. Vertex Function and the Anomalous Magnetic 
Moment of Leptons in NQED 

In the momentum space and in the Euclidean metric, 
the vertex function takes the form [Figure 5]: 

𝛤̃𝜇
𝑙(𝑝1, 𝑝) = −

𝑒2

(2𝜋)4
∫ 𝑑4𝑘𝐸

𝑉((𝑝𝐸 − 𝑘𝐸)
2𝑙2)

(𝑝𝐸 − 𝑘𝐸)
2

𝛾𝜈 × 

× 
𝑚 − 𝑘̂𝐸 − 𝑞̂𝐸

𝑚2 + (𝑘𝐸 + 𝑝𝐸)
2
𝛾𝜇
𝑚− 𝑘̂𝐸
𝑚2 + 𝑘𝐸

2 𝛾𝜐

       (103) 
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Again passing to the Minkowski metric and using the 
generalized Feynman parameterization formula (96) 
one gets: 

𝛤̃𝜇
𝑙(𝑝1; 𝑝)

= −
𝑒2

8𝜋

1

2𝑖
∫ 𝑑
−𝛽−𝑖∞

−𝛽+𝑖∞

𝜉
𝑣(𝜉)

(sinπξ)2
(𝑚2𝑙2)𝜉

𝛤(1 + 𝜉)
𝐹𝜇(𝜉; 𝑝1, 𝑝)        (104) 

where 

𝐹𝜇(𝜉; 𝑝1, 𝑝) = 𝛾𝜇𝐹1(𝜉; 𝑝1, 𝑝) + 𝐹2𝜇(𝜉; 𝑝1, 𝑝). 

Here 

𝐹1(𝜉; 𝑝1, 𝑝) =
1

𝛤(1 − 𝜉)
∫ ∫ ∫ 𝑑

1

0

1

0

1

0

𝛼𝑑𝛽𝑑𝛾𝛿(1 − 𝛼 − 𝛽 − 𝛾)

× 𝛼−𝜉𝑄𝜉 ,

 

𝐹2𝜇(𝜉; 𝑝1, 𝑝) =
1

𝛤(−𝜉)
∫ ∫ ∫ 𝑑

1

0

1

0

1

0

𝛼𝑑𝛽𝑑𝛾𝛿(1 − 𝛼 − 𝛽 − 𝛾) 

× 𝛼−𝜉𝑄𝜉−1
1

𝑚2
[𝑚2𝛾𝜐 − 2𝑚𝑞𝜇 + 4𝑚(𝛽𝑞𝜇 − 𝛼𝑝𝜇) +

+(𝛼𝑝̂ − 𝛽𝑞̂)𝛾𝜇𝑞̂ + (𝛼𝑝̂ − 𝛽𝑞̂)𝛾𝜇(𝛼𝑝̂ − 𝛽𝑞̂)],       

(105) 

and 

𝑄 = 𝛽 + 𝛾 − 𝛼𝛾
𝑝2

𝑚2
− 𝛽𝛾

𝑞2

𝑚2
− 𝛼𝛽

(𝑝 + 𝑞)2

𝑚2
. 

 

Fig.5. Vertex function in NQED 

Let us calculate the vertex function (104) for two 
cases: first, when 𝑞 = 0 and 𝑝 has an arbitrary value; 
second, when 𝑞  is an arbitrary quantity and 𝑝, 𝑝1  are 
situated on the 𝑚 - mass shell. 

In the first case, assuming 𝑞 = 0  in the formula 
(105) and after some standard calculations [8], one 
gets 

𝐹𝜇(𝜉; 𝑝1, 𝑝) =  
1

𝛤(1 − 𝜉)
∫ 𝑑
1

0

𝑢 (
1 − 𝑢

𝑢
)
𝜉

(1 − 𝑢
𝑝2

𝑚2
)

𝜉

× 

× [𝑢 𝛾𝜇 +
2𝜉 𝑢 𝑝𝜇(2𝑚 − 𝑢 𝑝̂)

𝑚2 − 𝑢 𝑝2
]  .

   (106) 

Comparing this formula with the expression (101) for 
the self-energy of the electron, it is easily seen that 

𝐹𝜇(𝜉; 𝑝, 𝑝) = −
𝜕

𝜕𝑝𝜇
𝐹(𝜉; 𝑝)           (107) 

From this identity, we can obtain a very important 
conclusion. In the nonlocal theory of quantum 

electrodynamics constructed by using the concept of 
influence of gravity through introduction of the 
fundamental length named the Planck one in 4-
dimensional spacetime which is embodied into 5-
dimensional one, the Ward - Takahashi identity is 
valid 

𝛤̃𝜇
𝑙(𝑝, 𝑝) = −

𝜕

𝜕𝑝𝜇
𝛴̃𝑙(𝑝)                 (108) 

This is one of consequences of the gauge invariance, 
i.e., conservation of the electric charge in NQED. 

In the second case, one can put 

𝑢(𝑝→
1
)𝛤𝜇

𝑙(𝑝1, 𝑝)𝑢(𝑝
→) = 𝑢(𝑝→

1
)𝛬𝜇(𝑞)𝑢(𝑝

→)        (109) 

where 𝑢(𝑝→
1
)  and 𝑢(𝑝→)  are solutions of the Dirac 

equation 

(𝑝 − 𝑚)𝑢(𝑝→) = 0, 𝑢(𝑝→
1
)(𝑝1 −𝑚) = 0. 

Substituting the vertex function (104) into (109) and 
after some transformations, we have 

𝑢(𝑝→
1
)𝐹𝜇(𝜉; 𝑝1, 𝑝)𝑢(𝑝

→) = 𝑢(𝑝→
1
)𝛬𝜇(𝜉; 𝑞)𝑢(𝑝

→)         (110) 

Here 

𝛬𝜇(𝜉; 𝑞) = 𝛾𝜇𝑓1(𝜉; 𝑞
2) +

𝑖

2𝑚
𝜎𝜇𝜈𝑞𝜈𝑓2(𝜉; 𝑞

2), 

𝜎𝜇𝜈 =
1

2𝑖
(𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇), 

𝑓𝑖(𝜉; 𝑞
2) =

1

𝛤(1 − 𝜉)
∫ ∫ ∫ 𝑑

1

0

1

0

1

0

𝛼𝑑𝛽𝑑𝛾𝛿(1 − 𝛼 − 𝛽 − 𝛾)

× 𝛼−𝜉𝑀𝜉−1𝑔𝑖(𝛼, 𝛽, 𝛾, 𝑞
2), 

𝑀 = 𝜀𝛼 + (1 − 𝛼)2 − 𝛽𝛾
𝑞2

𝑚2
, 

𝑔1(𝛼, 𝛽, 𝛾, 𝑞
2) = [(1 − 𝛼)2(1 − 𝜉) + 2𝛼𝜉] −

−[𝛽𝛾 + 𝜉(𝛼 + 𝛽)(𝛼 + 𝛾)]
𝑞2

𝑚2
,

𝑔2(𝛼, 𝛽, 𝛾, 𝑞
2) = 2𝛼(1 − 𝛼)𝜉 .

         (111) 

To avoid infrared divergences in the vertex function 

we have introduced here the parameter 𝜀 = 𝜇𝑝ℎ
2 /𝑚2, 

taking into account the "mass" of the photon. Finally, 
one gets 

𝛬𝜇(𝑞) = 𝛾𝜇𝐹1(𝑞
2) +

𝑖

2𝑚
𝜎𝜇𝜈𝑞𝜈𝐹2(𝑞

2),         (112) 

where 

𝐹𝑗(𝑞
2)

= −
𝑒2

8𝜋

1

2𝑖
∫

𝑑𝜉

(sinπξ)2

−𝛽−𝑖∞

−𝛽+𝑖∞

𝑣(𝜉)

𝛤(1 + 𝜉)
(𝑚2𝑙2)𝜉𝑓𝑗(𝜉, 𝑞

2)     (113) 

It is easy to verify that the vertex function 𝛬𝜇(𝑞) 

satisfies the gauge invariant condition: 
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𝑞𝜇𝑢(𝑝
→
1
)𝛬𝜇(𝑞)𝑢(𝑝

→) = 0          (114) 

Let us write the first terms of the decomposition for the 

functions 𝐹1(𝑞
2)  and 𝐹2(𝑞

2)  over small parameters 

𝑚2𝑙2 and 𝑞2/𝑚2: 

𝐹1(𝑞
2) =  

𝛼

4𝜋
[𝜒 − 2𝜎 − 𝑣 ′(0) +

9

2
− 6𝐶 − 3𝑚2𝑙2𝑣(1)] 

+
𝛼

2𝜋

𝑞2

𝑚2

× {
2

3
(
1

2
𝜎 −

3

8
) +

𝑚2𝑙2

3
[𝑣(1) (−𝜒 + 2𝐶 −

13

6
) + 𝑣′(1)]}

   (115)    
 

where 𝜎 = ln(𝑚2/𝜇𝑝ℎ
2 ), 𝐶 = 0.577215…  is the Euler 

constant, 𝛼 = 𝑒2/4𝜋 and 𝜒 = ln [
1

𝑚2𝑙2
], and 

𝐹2(𝑞
2) = −

𝛼

2𝜋
(1 −

2

3
𝑣(1)𝑚2𝑙2)           (116) 

From this last formula we can see that corrections to 
the anomalous magnetic moment (AMM) due to high-
dimensional spacetime with the fundamental length, 
we call it the Planck constant,for leptons are given by 

𝛥𝜇 =
𝛼

2𝜋
[1 −

2

3
𝑣(1)𝑚2𝑙2]       (117) 

The first term in (117) corresponds to the Schwinger 
[14] correction obtained in local QED. The second 
term is responsible from gravitational effects on the 
particle physics, where 

𝑙 = 𝐿𝑃𝑙 = √
𝐺ℏ

𝑐3
. 

In accordance with form-factors (91), the functions 

𝑣(𝑥) has the form: 

𝑣(𝑥) =
1

2
2−2𝑥

1

𝛤(1 + 𝑥)𝛤(2 + 𝑥)
. 

Finally, notice that if we introduce some other length 𝑙 
which is differ from the Planck length 𝐿𝑃𝑙  then for 
which we can get restriction on its value from the 
experimental data on measuring of the AMM of 
leptons. Thus, from experimental values of AMM of 
the electron and muon [18-20] and [21]: 

𝛥𝜇𝑒𝑥𝑝
(𝑒) =

𝜇𝑒
𝜇𝐵
− 1 =

1

2
(𝑔 − 2)

= (1159652180.73(0.28)) × 10−12
               (118) 

and 

𝛥𝜇𝑒𝑥𝑝
(𝜇)

=
𝜇𝜇

(𝑒ℏ/2𝑚𝜇)
− 1 =

1

2
(𝑔𝜇 − 2)

=  (116592089(63)) × 10−11
          (119) 

one gets the following restrictions on the value of the 

universal parameter (or the fundamental length) 𝑙: 

𝑙 ≤ 7.0 × 10−17𝑐𝑚   for    Δμ
exp
(𝑒) ,             (120) 

𝑙 ≤ 2.6 × 10−17𝑐𝑚  for    Δμexp
(μ)              (121) 

Recent very high accuracy experimental result [23] for 
measuring the anomalous magnetic moment of muon 

𝑎𝜇(𝐹𝑁𝐴𝐿) = 11659055(24) × 10
−11(0.20𝑝𝑝𝑚)     (122) 

and 

𝑎𝜇(𝑒𝑥𝑝) = 11659059(22) × 10
−11(0.19𝑝𝑝𝑚)       (123) 

allows us to compare with the SM calculation [22] 

𝑎𝜇
𝑆𝑀(𝑡ℎ𝑒𝑜𝑟𝑦) = 116591810(43) × 10−11.        (124) 

As a result difference of these two values is 

𝛥 = 𝑎𝜇
𝑒𝑥𝑝

− 𝑎𝜇
𝑆𝑀 = (25.1 ± 5.9) × 10−10.            (125) 

Worth notice that contribution arisen from the high 
dimensional spacetime to the anomalous magnetic 
moments of leptons is negative value: 

(𝛥𝜇)ℎ = −
𝛼

3𝜋
𝑣(1)𝑚2𝑙2,                  (126) 

here 

𝑣(1) =
1

16
.                        (127) 

D. Vacuum polarization 

Since, in this concrete scheme the propagator 

𝑆(𝑥 − 𝑦)  of the charged lepton spinor does not 
changed and therefore the diagrams of the vacuum 
polarization i.e. closed spinor propagators of leptons 
in the nonlocal QED are investigated by the same way 
as in the local theory. Therefore, standard calculations 
by using the D-dimensional regulation procedure (see 

[28], for detail) read to the following result in 𝐷 = 4 
dimensional case: 

𝛱𝜇𝜈(𝑞) = (𝑞
2𝑔𝜇𝜈 − 𝑞𝜈𝑞𝑚)𝛱(𝑞

2),              (128) 

here 

𝛱(𝑞2) =
𝑒2

2𝜋2
∫ 𝑑
1

0

𝑥𝑥(1 − 𝑥)ln (1 +
𝑞2𝑥(1 − 𝑥)

𝑚2
)    (129) 
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