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Abstract— In this work, XGBoost model-based
injection substation load prediction is presented.
The case study dataset consist of AKA feeder
which are part of an injection substation in Uyo
Akwa Ibom State. The parameters considered are
the historical load data and the feeder state. The
data cleaning algorithm, data trimming analytical
model, the details of the XGBoost model are
presented along with the description of the case
study injection substation load dataset.
Specifically, 4 months hourly historical data were
used in the study. The performance metric used
for the model assessment is the Mean Squared
Error (MSE). The entire dataset was split into 70%
for training while 30% were used test set.
XGBoost regression models were created for the
AKA feeder ; the number of estimators were
defined as 1000, the tree threshold was set to 50
while the learning rate was set to 0.001. The
results of the MSE for the XGBoost model
predictions is 113.19. The MSE values is slightly
high. As such, it is recommended that further
studies should be conducted with other machine
learning models to see which model can give
better prediction performance than the XGBoost.
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1.0 Introduction

Load prediction and forecasting is a quintessential
requirement in the electrical industry due to its ability to
provide quality information on load resource demands,
hence, aid effective management of the limited available
resource [1,2,3]. A proper and accurate forecast can
mitigate over-estimation or under-estimation of required
power system equipment [4,5]. Furthermore, the need for a
precise estimation of required power system equipment
calls for an accurate prediction and forecasting model
which yields minimum prediction errors.

Notably, some researches carried out on electricity cost
analysis and market design unanimously confirms that
inaccurate predictions result in overestimated load which in
turn results in exorbitant cost depending on the prediction
error magnitude [6,7,8]. Other consequences for inaccurate
predictions include contract retraction for market members
[9,10], provision shortage [11,12] and and expensive
makeup services [13]. Other than giving enhancing
efficiency on the overall power market, accurate predictions
give a clear insight into the power system dynamics.
Accordingly, in this work, XGBoost model is used for the
prediction of load demand on an injection substation [14].
The model utilized time stamped historical data of the load
demand on the feeders in the injection substation to both
train and validate the model. The details of the model
description, the data cleaning procedure and the model
training and validation procedure along with the prediction
performance evaluation are presented.

2.0 Methodology
21 Dataset Description

A typical dataset from distribution station is used in the
proposed model for prediction and of load demand. The
case study dataset is obtained for AKA feeder which is part
of distribution substation in Uyo, Akwa Ibom State. The
parameters considered are the historical load data and the
feeder dataset as shown in Figure 1. These dataset are
considered as time series since they are recorded on hourly
bases and each row of the data has a unique timestamp.
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Figure 1: Required input dataset for prediction
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2.2 Data Cleaning

Prior to data normalization, all null values for each column
are compiled using Equation 1;

A, = oo F(1i3R);

Where, dpy, denotes the output vector which contains all
the null or non-numeric values in the k" column, N
denotes the total number of data , F is the filter function, 7;
is the i*" data point to be tested, while R is the real number
space which spans between —oo and oo. If r; is not within
the range of R, then r; is appended to the dy,,;, vector. The

null percentage for each data column can be computed as:

@

Where R, is the null percentage which is computed for the
k™" column, and N is the total data points. The valid
columns are retrieved using the criteria that X; must be less
than or equal to 10% (X, < 10). It is assumed that if null
percentage exceeds 10% in any given column, then the
predicted output may not be reliable. Another important
task to perform is to ensure that all data fits into its correct
data type. Various data types that may exist include string,
float, datetime, integer, and Boolean. However, due to the
nature of the data used in this work , only two data types
are considered which are: datetime and float. Datetime is
used for the date column which gives information on when
the data was captured. This column is also referred to as the
unique id (UID) columns since no two columns have the
same time stamp. On the other hand, the float data type is
used for the historical load data and the feeder state since
these two parameters record real numeric values. The data
cleaning algorithm is presented in Algorithm 1

—0<R<ow (1)

dnullk

Nk: N

Algorithm 1: Data cleaning algorithm

1: Begin

2: Initialize Xy, dyyy,, Z > Normalized data output
3: Require C — Raw data input

4: foreach data column dj, in C

5: Compute dpyy, based on Equation 1

6 Compute X, based on Equation 2

7 if X, < 10 then

8: Set all null entries in dj, to zero

9 append d, to Z

10: endif

11: return Z

12: end for

13: end

23 Load prediction Based on XGBoost Model

In this work, XGBoost model is used to predict the load on
the substation. In the XGBoost model, multiple weak
learners are amalgamated into a common strong learner.
This property reduces the loss function, L,gj,. Supposed the

dataset to be trained is defined as D = {x;, y;}", XGBoost
model must obtain the approximation F (x) for the mapping
function F(x) which maps the input vector x to the
corresponding output vector y. In this case the loss function
Lygp must be optimized L.y, = L{y, F(x)}. An extensive
approximation F*(x) can be computed as a weighted
aggregate of functions.

Fi(x) = Fj_1(x) + w;Q;(x) (€)

Where, w; denotes weight of the j th function Q j(x). The
function list represents the decision tree. An iterative
method is used to formulate the approximations. For the
initial function, the approximation can be obtained as:

Fy(x) = arg min, Z?I:l Liy,a) (4

Where, a denotes an hyper parameter. The successive
functions must minimize

{0, @0} = argming, g 2i L (yi, Fra () + 0Q(x)
5)

For the gradient drop optimization of the mapping function,
every Q; is considered as a gradient step. This requires that
Q; must be trained with the most recent dataset Dy where

Dy = {xi'rij}?l:l (6)

Where, r;; denotes the spurious residual and can be
computed as:

ALy F(x))
v = |————— 7
ij [ FE  pey=rF;_y(x ”

The gradient drop step can be damped in order to normalize
the gradient boost. The damper can expressed as:

Fy () = Fys () + vay @, (x) (8)

In this work , v = 0.1, this lower value is selected to
improve the learning rate. The decision tree complexity can
be scaled down using the dissimilarity of the loss function:

Legp = 0 LOLFO)) +X12,(Q) (9
Q; = oLy + 125 (10)

Where, o denotes the loss reduction gain controller, Ly
denotes the number of leaves for the specified tree, and ¢
denotes the outcome of the leaves. It should be note that o
is inversely proportional to tree complexity. In other words,
tree complexity is reduced as ¢ is increased. In order to
improve the learning rate, the XGBoost model mitigates the
difficulty of computing the best segment. The segmentation
function lists all segment members and chooses the one that
has the best gain. This implies that for every node, there
must be a search through over the listed properties to
compute the best segment.

3. Results and Discussion

The historical load dataset for AKA feeder which is part of
substation in Uyo metropolis in Akwa Ibom State is used.
The dataset used in the study where presented in CSV file
format and those historical data are captured on hourly
basis for a period of 4 months (specifically May to August
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of 2022. The Mean Squared Error (MSE) is used for
performance evaluation.

From the raw data collated, the following columns were

XGBoost regression models were created for the AKA
feeder dataset and the number of estimators which
represents the number of boosting trees were defined as

1000. Before fitting the models on each of the training set,
the features of the training set were extracted. These feature
include the seasonal pattern of the dataset. The tree
threshold was set to 50. This means that if the test set fails
to improve after 50 trees, the model evaluation will stop.
The learning rate was set to 0.001 to improve the learning

extracted: “TIME”, “AKA”, “FDR.1”, as shown in Figure
2 where AKA represents data for AKA feeder. The “TIME”
column Figure 2 is used as the unique index for referencing
each row of data. The un-scaled data slice for AKA dataset
is shown in Figure 3 while visualization of the historical
load and feeder state for AKA is shown in Figure 4. The

entire dataset was split into 70% for training while 30% process.
were used as test set, as shown in Figure 5 for AKA feeder.
TIME AKA FDR.1 KVA PF RP
TIME
-05- 01/05/2022
20202133_2; 'clboc 150 25 180 3 111
-05-01 01,/05/2022
202:2_%50_20 e 150 25 180 3 111
-05-01 01/05/2022
202023_%50,20 - c; o0 150 25 180 3 111
2022-05-01 01/05/2022
04_050_00 = D‘c:-oo 150 25 180 3 111
202025'0050'33 e 150 25 S LS 1.1
2022-08- 25/08/2022
20,0%_;3 i~ ¥ US 108 09 03
2022-08-25 25/08/2022 _ N
-08- 25 /08 /7/5022
2022220800‘;3 e 6 S 108 09 3.9

Figure 2 : A portion of cleaned dataset
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AKKA FDR_AKA

TIME
2022-05-01 O1:00:-00 150.0 M
2022-05-01 02:00:00 1350.0 >
2022-05-017 O0=3:00:00 150.0 =5
2022-05-0171 O4:00:-00 150.0 i
2022-05-017 O5:00:-00 150.0 2.5
2022-08-25 20:00:-00 O.O 4.3
2022-08-25 21:-00:-00 o.O a.3
2022-08-25 22:00:00 O.O 4.3
2022-08-25 232:00:00 O.O a.=
2022-08-26 00:00:-00 O.O 4.3

2808 rows = 2 columns

Figure 3: Un-scaled data slice for AKA dataset
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Figure 4 Visualization of the historical load and feeder state for AKA
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Figure 5: Training/test set splitting for AKA dataset
for the XGBoost model predictions is 113.19 for the AKA

The feature importance for the model on the AKA is

presented in Table 1. The important features are plotted in feeder.
Figure 6 for AKA feeder. The results extracted from the Table 1: Feature importance for the model on AKA and
features importance on the feeder dataset show that the IBB feeder dataset

XGBoost model mainly use the hourly property of the

dataset to make predictions followed by the FDR data Column Property AKA

property and then the days of the week data property. FDR 0.400109

Notably, the week property is meant to feed the model with

the seasonal pattern of the datasets. Hour 0.532639

Now the forecast on the test set was performed with the Days of the week 0.067252

training model and the results are shown in Figure 7 for the
AKA feeder dataset. From the results presented, the MSE
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Figure 6: Feature importance for the model on AKA feeder dataset
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Figure 7: Model prediction for AKA data using XGBoost

4. Conclusion

Prediction of load at a feeder of an injection substation
using XGBoost model is presented. The model description,
dataset preprocessing, model training and the model
prediction process are presented along with the
performance metric which is mean square error. The case
study data consist of time stamped hourly data of a feeder
in an injection substation. The results showed a relatively
high root mean error. As such, it is recommended that for
the given injection substation load dataset, other machine

learning models should be used to model and predict the
load data to see if better prediction performance can be
achieved.
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