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2.2 Data Cleaning 

Prior to data normalization, all null values for each column 
are compiled using Equation 1; 

𝑑௡௨௟௟ೖ
ൌ ∑ ℱሺ𝑟௜∄ℝሻ;     െ∞ ൏ ℝ ൑ ∞ே

௜ୀ଴      (1) 

Where, 𝑑௡௨௟௟ೖ
 denotes the output vector which contains all 

the null or non-numeric values in the 𝑘௧௛  column, 𝑁 
denotes the total number of data ,  ℱ is the filter function, 𝑟௜ 
is the 𝑖௧௛ data point to be tested, while ℝ is the real number 
space which spans between െ∞ and ∞. If 𝑟௜  is not within 
the range of ℝ, then 𝑟௜ is appended to the 𝑑௡௨௟௟ೖ

 vector. The 
null percentage for each data column can be computed as: 

ℵ௞ ൌ
ௗ೙ೠ೗೗ೖ

ே
 (2) 

Where ℵ௞ is the null percentage which is computed for the 
𝑘௧௛  column, and 𝑁  is the total data points. The valid 
columns are retrieved using the criteria that ℵ௞ must be less 
than or equal to 10% ሺℵ௞ ൑ 10ሻ. It is assumed that if null 
percentage exceeds 10%  in any given column, then the 
predicted output may not be reliable. Another important 
task to perform is to ensure that all data fits into its correct 
data type. Various data types that may exist include string, 
float, datetime, integer, and Boolean. However, due to the 
nature of the data used in this work , only two data types 
are considered which are: datetime and float. Datetime is 
used for the date column which gives information on when 
the data was captured. This column is also referred to as the 
unique id (UID) columns since no two columns have the 
same time stamp. On the other hand, the float data type is 
used for the historical load data and the feeder state since 
these two parameters record real numeric values. The data 
cleaning algorithm is presented in Algorithm 1 

Algorithm 1: Data cleaning algorithm 

1: Begin 

2: Initialize ℵ௞, 𝑑௡௨௟௟ೖ
, ℤ → 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 𝑜𝑢𝑡𝑝𝑢𝑡 

3: Require ℂ → 𝑅𝑎𝑤 𝑑𝑎𝑡𝑎 𝑖𝑛𝑝𝑢𝑡 

4: foreach data column 𝑑௞ in ℂ 

5:  Compute 𝑑௡௨௟௟ೖ
 based on Equation 1 

6: Compute ℵ௞ based on Equation 2 

7: if ℵ௞ ൑ 10 then 

8:  Set all null entries in 𝑑௞ to zero 

9:  append 𝑑௞ to ℤ 

10: endif 

11: return ℤ 

12: end for 

13: end 

2.3 Load prediction Based on XGBoost Model 

In this work, XGBoost model is used to predict the load on 
the substation. In the XGBoost model, multiple weak 
learners are amalgamated into a common strong learner. 
This property reduces the loss function, 𝐿௫௚௕. Supposed the 

dataset to be trained is defined as 𝔻் ൌ ሼ𝑥௜, 𝑦௜ሽே, XGBoost 
model must obtain the approximation 𝐹෠ሺ𝑥ሻ for the mapping 
function 𝐹ሺ𝑥ሻ  which maps the input vector 𝑥  to the 
corresponding output vector 𝑦. In this case the loss function 
𝐿௫௚௕  must be optimized 𝐿௫௚௕ → 𝐿ሼ𝑦, 𝐹ሺ𝑥ሻሽ. An extensive 
approximation 𝐹∗ሺ𝑥ሻ  can be computed as a weighted 
aggregate of functions. 

𝐹௝ሺ𝑥ሻ ൌ 𝐹௝ିଵሺ𝑥ሻ ൅ 𝜔௝ℚ௝ሺ𝑥ሻ  (3) 

Where, 𝜔௝  denotes weight of the 𝑗௧௛  function ℚ௝ሺ𝑥ሻ. The 
function list represents the decision tree. An iterative 
method is used to formulate the approximations. For the 
initial function, the approximation can be obtained as: 

𝐹଴ሺ𝑥ሻ ൌ 𝑎𝑟𝑔 minఈ ∑ 𝐿ሺ𝑦௜, 𝛼ሻே
௜ୀଵ  (4) 

Where, 𝛼  denotes an hyper parameter. The successive 
functions must minimize 

൛𝜔௝, ℚ௝ሺ𝑥ሻൟ ൌ 𝑎𝑟𝑔 minఠ,ℚ ∑ 𝐿 ቀ𝑦௜, 𝐹௝ିଵሺ𝑥௜ሻ ൅ 𝜔ℚሺ𝑥௜ሻቁே
௜ୀଵ

 (5) 

For the gradient drop optimization of the mapping function, 
every ℚ௝ is considered as a gradient step. This requires that 
ℚ௝ must be trained with the most recent dataset 𝔻் where 

𝔻் ൌ ൛𝑥௜, 𝑟௜௝ൟ
௜ୀଵ

ே
 (6) 

Where, 𝑟௜௝  denotes the spurious residual and can be 
computed as: 

𝑟௜௝ ൌ ቂ
డ௅ሺ௬೔,ிሺ௫ሻሻ

డிሺ௫ሻ
ቃ

ிሺ௫ሻୀிೕషభሺ௫ሻ
 (7) 

The gradient drop step can be damped in order to normalize 
the gradient boost. The damper can expressed as: 

𝐹௝ሺ𝑥ሻ ൌ 𝐹௝ିଵሺ𝑥ሻ ൅ 𝑣𝜔௝ℚ௝ሺ𝑥ሻ  (8) 

In this work , 𝑣 ൌ 0.1 , this lower value is selected to 
improve the learning rate. The decision tree complexity can 
be scaled down using the dissimilarity of the loss function: 

𝐿௫௚௕ ൌ ∑ 𝐿ሺ𝑦௜, 𝐹ሺ𝑥௜ሻሻே
௜ୀଵ ൅ ∑ ൫ℚ௝൯௃

௝ୀଵ  (9) 

ℚ௝ ൌ 𝜎𝐿் ൅
‖ఝ‖మ

ଶ
 (10) 

Where, 𝜎  denotes the loss reduction gain controller, 𝐿் 
denotes the number of leaves for the specified tree, and 𝜑 
denotes the outcome of the leaves. It should be note that 𝜎 
is inversely proportional to tree complexity. In other words, 
tree complexity is reduced as 𝜎  is increased. In order to 
improve the learning rate, the XGBoost model mitigates the 
difficulty of computing the best segment. The segmentation 
function lists all segment members and chooses the one that 
has the best gain. This implies that for every node, there 
must be a search through over the listed properties to 
compute the best segment. 

3.  Results and Discussion 

The historical load dataset for AKA feeder which is part of  
substation in Uyo metropolis in Akwa Ibom State is used. 
The dataset used in the study where presented in CSV file 
format and those historical data are captured on hourly 
basis for a period of 4 months (specifically May to August 
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