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Abstract— The aim of this study is to 
determine from a patient's medical history 
whether breast cancer is benign or malignant 
using logistic regression and random forest 
machine learning techniques. The dataset was 
obtained from Breast Cancer Wisconsin 
(Diagnostic) dataset repository. In the dataset, 
there are 35 attributes and 569 patient records. 
The 5-fold cross-validation was adopted whereby 
20% of the dataset was used as the test set while 
the other 80% of the fold was used for the training 
of the models. After training, it was discovered 
from the model performance results that the 
logistic regression model performed better than 
the random forest model. Specifically, the logistic 
regression model has the best performing with a 
98.7% training accuracy, 96.7% validation 
accuracy, and a 97.2% test accuracy. In addition, 
the logistic regression has the highest test F1-
score of 97.163% and the highest recall score of 
96.92% which is among the most important metric 
for the Healthcare industry. The ideas presented 
in this work will help doctors to quickly detect 
breast cancer and this can reduce maternal 
mortality due to breast cancer. 
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1. INTRODUCTION 
According to research findings, when cells begin 

to multiply uncontrollably, cancer develops [1,2,3,4]. 
Cancer in the breast is a condition that is identified by the 
irregular changes of breast cells. It is the most prevalent 
malignant disorder that affects women and the main reason 
why they die [9,10,11]. Cancerous cells associated with 
breast cancer carriages a great risk to health and contributes 
significantly to female fatality [12,13,14]. The number of 

breast cancer cases has intensified over the years, due to the 
disease's increasing global growth amongst women, it has 
risen to the status of the second-leading sickness [32,33,37]. 
The number of death due to breast cancer can be actually 
reduced with an early diagnosis. Since it is one of the most 
curable tumors if diagnosed earlier, medical management 
improves the chances of survivability.  

The incidence of cancerous cells forming in the 
breast, is more common in females than men. Age, family 
history, and medical history are a few of the most 
significant risk variables that you have no control over 
[21,22,23]. The incidence of cancerous cells forming in the 
breast, is more common in females than men [15,24,]. 
Family history and medical history are a few of the most 
significant risk variables that you have no control over 
[7,8,17]. Breast cancer diagnosis is a lengthy and costly 
process. The consistency and expertise of the medical 
experts are crucial to the diagnosis procedure [,25,26,27]. 
Malignant and benign tumors are the two primary types of 
growths (tumorous). Diagnosis by medical professionals is 
frequently prone to omissions and errors, therefore this 
misinterpretation might send the potential breast cancer 
patient into irreversible damage [5,6,31].  

Meanwhile, nowadays, information gathering can 
now be done with incredible speed, scale, and complexity 
while needing less work and having more autonomy 
[28,29,30]. In order to execute a variety of activities, data 
are rapidly being merged with developing technologies on 
various sizes, from cellphones to computing, as the 
information and experience in these endeavors increase 
[34,35,36]. Data mining and machine learning, two 
overlapping subfields of artificial intelligence, examine the 
connections between determinants and consequences, 
forecast future issues, and offer remedies to some life 
problems [39,40,16]. Accordingly, the objectives of this 
study is the application of two different machine learning 
models in the detection of breast cancer using a dataset 
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Figure 4  The F1 scores across the 5 folds for the training dataset 

 
 

Table 2: Validation F1 scores across the 5 folds 

 1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average  

Logistic Regression 96.9697 98.5507 93.7500 100.0000 94.1176 96.6776 

Random Forest 95.3846 100.0000 89.2308 95.5224 88.5714 93.7418 

 

 
Figure 5 The F1 scores across the 5 folds for the validation  dataset 

 
Table 3: The Results on Accuracy, Precision, Recall and F1-Score 

Algorithms Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Logistic Regression 97.3684 97.4106 96.9246 97.1583 

Random Forest 96.4912 97.3684 95.2381 96.1486 
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Figure 5 The Results on Accuracy, Precision, Recall and F1-Score 

 
6. CONCLUSION 

This work focused on using logistic regression and 
random forest machine learning techniques to diagnose 
breast cancer from patients' medical records. By evaluating 
and comparing the performance of the two algorithms on 
the Wisconsin breast cancer dataset, new insights into their 
effectiveness in diagnosing breast cancer are obtained. The 
5-fold cross-validation was used to evaluate the 
performance of the model. The validation accuracy of all 
the models was above 90%. Logistic regression model has 
better performance. It has the highest f1-score (97.16%). 
The validation accuracy of all the models was above 90%. 
The best performing model, the logistic regression model, 
had an accuracy of 97%. Given that the logistic regression 
model achieved the highest recall score it will be the 
preferred model for the health sector. Healthcare 
professionals can benefit from this knowledge when 
developing and utilizing breast cancer detection systems. 
Researchers and healthcare practitioners can rely on this 
information to make informed decisions when choosing an 
algorithm for breast cancer detection. 
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