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Abstract— In this paper, prediction of breast
cancer using support vector machine (SVM) and
decision tree machine learning models was
presented. The model training and validation are
performed using the Breast Cancer Wisconsin
(Diagnostic) dataset. The dataset consists of 569
records of patients and 35 columns. Exploratory
data analysis wais carried out on the diabetic
patient dataset using the Pandas-Profiling library.
The Seaborn library was used to show the
Pearson Correlation of features in the dataset. The
model training dataset was divided into 5 folds.
Each fold was used as the validation set in 5
iterations. The results show that for the training,
the SVM has F1 score with mean value of 98.505%
while the decision tree model has F1 score with
mean value of 99.334 %. On the other hand, for the
validation dataset, the SVM has F1 score with
mean value of 96.696 % while the decision tree
model has F1 score with mean value of 91.6729
%.In addition, according to the results of the
confusion matrix, the SVM has better performance
as it had true (or correct) prediction with a higher
value of 97.4 % while the decision tree has correct
(true) prediction of 2.6%. Again, the SVM has
better results for the untrue (or incorrect)
prediction with a smaller value of 2.6 % while the
decision tree has higher untrue (or incorrect)
prediction of 5.3%. Essentially, the SVM model
can predict the likelihood of breast cancer better
that the decision tree model.
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1. INTRODUCTION
In recent years, there has been increase in the
incidence of breast cancer across the globe [1,2,3].

Accordingly, many non-governmental organizations, as
well as government agencies are making more effort to
address the issue. The efforts are geared towards creating
awareness of breast cancer and getting people to know
measures that can be used to detect the likelihood of
occurrence of breast [4,5,6]. Also, information on life styles
that can increase the chances of breast cancer are also
publicized so as to encourage people to avoid such [7,8,9].

In addition, the medical practitioners and
researchers have also applied some intelligent ways to
diagnose and predict the likelihood of breast cancer in a
patient based on medical historical data [10,11,12]. Such
approach requires the use of intelligent algorithms which
can be trained with the medical data records of breast
cancer patients and hence enable such algorithms to predict
with sufficient accuracy the likelihood of breast cancer in a
person. Accordingly, in this work, support vector machine
(SVM) and decision tree machine learning algorithms are
employed to predict breast cancer [13,14,15,16]. A case
study Breast Cancer Wisconsin (Diagnostic) dataset was
used for the model training and validation [17,18,19]. The
F1 score and the confusion matrix parameters were used to
compare the prediction performance of the two machine
learning models [20,21]. The essence of the study is to
determine which of the two machine learning models is
more suitable for breast cancer prediction.

2. METHODOLOGY

In this paper, the focus in the application of
support vector machine and decision tree machine learning
models for the prediction of breast cancer. The model
training and validation are performed using the Breast
Cancer Wisconsin (Diagnostic) dataset. The dataset consists
of 569 records of patients and 35 columns. The dataset
metadata, referred to as features are presented in Table 1.
In the features listed in Table 1, the column “Unnamed: 32”
is irrelevant. There are null values. The column is removed
during data cleaning. There are no missing values in the
dataset. There are also no duplicate values.
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Exploratory data analysis is carried out on the
diabetic patient dataset using the Pandas-Profiling library
[22, 23]. The screenshots shown in Figure 1 and Figure 2
show that there are 569 missing values which are from the

‘Unnamed: 32’ column. There are 31 numeric variables, 1
categorical variable which is the ‘Diagnosis’ column. The
Table 1: Features of diabetic patient dataset

Unsupported variable is the ‘Unnamed: 32’ column’. The
screenshot in Figure 2 shows that there are no missing
values in any of the columns except the ‘Unnamed: 32’
column

S/N Features Count Data Type
0 id 569 non-null int64
1 Diagnosis 569 non-null object
2 radius mean 569 non-null float64
3 texture mean 569 non-null float64
4 perimeter mean 569 non-null float64
5 area mean 569 non-null float64
6 smoothness mean 569 non-null float64
7 compactness mean 569 non-null float64
8 concavity mean 569 non-null float64
9 concave points mean 569 non-null float64
10 symmetry mean 569 non-null float64
11 fractal dimension _mean 569 non-null float64
12 radius_se 569 non-null float64
13 texture se 569 non-null float64
14 perimeter se 569 non-null float64
15 area_se 569 non-null float64
16 smoothness_se 569 non-null float64
17 compactness_se 569 non-null float64
18 concavity se 569 non-null float64
19 concave points_se 569 non-null float64
20 symmetry_se 569 non-null float64
21 fractal dimension_se 569 non-null float64
22 radius_worst 569 non-null float64
23 texture worst 569 non-null float64
24 perimeter worst 569 non-null float64
25 area_worst 569 non-null float64
26 smoothness worst 569 non-null float64
27 compactness_worst 569 non-null float64
28 concavity worst 569 non-null float64
29 concave points_worst 569 non-null float64
30 symmetry worst 569 non-null float64
31 fractal dimension_worst 569 non-null float64
32 Unnamed: 32 0 non-null float64
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Figure 1: Overview of the dataset
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Figure 2: Visualization of nullity by column
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Figure 3 Pearson correlation of features in the dataset using seaborn

The Seaborn library is used to show the Pearson Correlation
of features in the dataset [24,25] (Figure 3). Pearson
Correlation is given as:

— nQxy)-ExXy) (1)

VInE 2= 02n T y2-[Zy]?]
Where: n is the total number of observations, X is the first
variable, y is the second variable and r is the pearson
correlation value. From the Seaborn Heatmap, it can be

seen that the area_mean column is highly positively
correlated with the area_se, area_worst,
concave_point_mean, concave_points_worse,
perimeter_mean, perimeter_se, perimeter_worse,
radius_mean, radius_se, radius_worst.
2.1 Model Training and validation

The model training dataset was divided into 5 folds. Each
fold was used as the validation set in 5 iterations as shown
in Figure 4. In the first iteration, the first part of the data is
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used for validation, while the other parts are used for
training as illustrated in Figure 4. This process is repeated

validation. Since it is a 5 folds technique, it means 20% of
the dataset is used as the validation set while 80 % is for

until all the folds of the dataset have been used for training.
Iteration 1 Test Train Train Train | Train
Iteration 1 Train Test Train | Train | Train
Iteratiom 1 1rain Train Test Train | 1rain
Iteration 1 Train Train Train Test Train
Iteration 1 Train Train Train | Train | Test

Figure 4 : The screenshot of the 5-Fold Cross-Validation

2.2 Training of the Support Vector Machine (SVM)
Model

The SVC (Support Vector Classifier) class is imported from
the svm module of the Sci-kit learn library (see Figure 5).
The regularization's intensity is inversely proportional to C.
It means the higher the value of C, the lesser the
regularization. Regularization is a technique used to reduce
overfitting during training. Overfitting occurs when the

machine learning model performs very well on the training
set but performs poorly on the validation set. It means the
model is not learning. It is just memorizing the training
data. The parameter C is set to 3.7276. The rbf SVM kernel
is used. The other SVM kernels available in the Sci-kit
Learn library are ‘poly’, ‘rbf’, ‘sigmoid’, and
‘precomputed.’

# Use the best parameters to train the logistic regression algorithm

from sklearn.svm import SVC

svm_model = SVC(C=3.727593720314938, kernel='rbf')
svm_train_val_result = cross_validation(svm_model, scaled_X_train, y_train, 5)

print(svm_train_val_result)

Figure S: Training of the SVM Model

23 Training of the Decision Trees Model

DecisionTreeClassifier class was imported from the tree
module of the Sci-kit Learn library. The criterion parameter
is a function for determining the quality of a split. The
criterion is “entropy.” The min_samples_split represents

the minimum amount of samples needed to separate an
internal node in the decision tree. This parameter helps to
avoid overfitting. The min_samples_split is 5. It means
once we have 5 samples remaining, they should not be split
again into various classes (as shown, Figure 6).

# Use the best parameters to train the Decision Tree algorithm
from sklearn.tree import DecisionTreeClassifier

dt_model = DecisionTreeClassifier(criterion="entropy",

min_samples_split=5,
random_state=0)

dt_train_val_result = cross_validation(dt_model, scaled X_train, y_train, 5)

print(dt_train_val_result)

Figure 6: Training of the Decision Tree Model

3. RESULTS AND DISCUSSION

31 Training and Validation Results
The case study dataset is imbalanced as such, in this work
the training and validation results, are focus on the F1 score
metric. This is because accuracy is not effective metric on a
dataset with imbalanced classes. However, accuracy,
precision, recall, and fl-score metrics are used to evaluate
the test set. The F1 scores for the training dataset across the
5 folds are as presented in Table 2 and Figure 7 while the
F1 scores for the validation dataset across the 5 folds are as
presented in Table 3 and Figure 7. The results show that for
the training dataset (Table 2 and Figure 7), the SVM has F1

score with mean value of 98.505% while the decision tree
model has F1 score with mean value of 99.334 %. On the
other hand, for the validation dataset (Table 3 and Figure
8), the SVM has F1 score with mean value of 96.696 %
while the decision tree model has F1 score with mean value
0f 91.6729 %. Essentially, the decision tree has higher (and
hence better) F1 score in the training dataset than the SVM.
However, the reverse is the case on the testing dataset
where the SVM has higher (and hence better) F1 score in
the training dataset than the decision tree. As such, other
performance parameters available in confusion matrix are
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used to determine the model that is better for application in

breast cancer prediction.

Table 2: The F1 scores for the training dataset across the 5 folds

1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average
SVM F1 scores 98.5075 98.1273 99.2593 97.7444 98.8848 98.5046
Decision Tree F1 scores 99.2593 99.6337 99.2701 100.0000 98.5075 99.3341

The F1 scores for the training dataset across the 5 folds
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Figure 7 The F1 scores for the training dataset across the S folds
Table 3: The F1 scores for the validation dataset across the S folds
1st Fold 2nd Fold 3rd Fold 4th Fold Sth Fold Average
SVM F1 scores 95.3846 100.0000 95.3846 97.0588 95.6522 96.6960
Decision Tree F1 95.5224 92.9577 89.8550 95.5224 84.5070 91.6729
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Figure 8 The F1 scores for the validation dataset across the 5 folds
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The results on the confusion matrix are presented in Figure
9, Figure 10 and Figure 11 and they show that the number
of true positives, false positives, true negatives, and false
negatives. According to the confusion matrix results. Also,
the statistics of true or correct prediction is presented in
Figure 12 while the statistics of false or incorrect prediction
is presented in Figure 13. According to the results, the
SVM has better results for the true (or correct) prediction

Tue label

(=]

Predicted label

with a higher value of 97.4 % while the decision tree has
correct (true) prediction of 2.6%. Again, the SVM has
better results for the untrue (or incorrect) prediction with a
smaller value of 2.6 % while the decision tree has higher
untrue (or incorrect) prediction of 5.3%. Essentially, the
SVM model can predict the likelihood of breast cancer
better that the decision tree model.

=

Figure 9: Confusion matrix heat map for the SYM Model
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Figure 10: Confusion matrix heat map for Decision Tree Model

Confusion Matrix Summary
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True Positives False Positives True Negatives False Negatives
ESVM 39 0 72 3
®m Decision Tree 37 1 71 5

Figure 11 The summary of the confusion matrix for the two models
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Statistics of true or correct prediction
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Figure 12 Statistics of true or correct prediction

Statistics of false or incorrect prediction

—

o S

) .S

2 0

O -

Y— O

Y— QO

(@

o =

+—

T O

g2

S o

o ©

o O

L £

e False Positives (% False Negatives (%) Total False Results
uSVM 0 2.6 2.6
B Decision Tree 0.9 4.4 53

Figure 13 Statistics of true or correct prediction
decision tree in making correct predictions of breast cancer
4. CONCLUSION incidence in the patience.

The focus of this paper is on the support vector machine
(SVM) and decision tree machine learning models which
are trained for prediction of breast cancer. The cancer
patients’ dataset was acquired and the 5-fold technique was
employed in splitting the dataset into training and
validation set. The models were iteratively trained based on
the 5-fold approach and the F1 scores were obtained for
each model for each of the five folds. Also confusion
matrix results were obtained for the two models. The results
showed that the SVM model performed better than the
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