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Abstract— 1In this paper, Recurrent Neural
Network (RNN)-based injection substation load
prediction and forecasting is presented. Mathematical
representation of the model is presented and the two key
parameters used as the input for the model prediction
and forecasting are the feeder and historical injection
station load behavior. The long short term memory
networks (LSTM). Architectures is used in the RNN
model. The algorithm of the RNN Based on LSTM
Architecture is also presented. An historical hourly
feeder load profile from Udo Udoma substation in Akwa
Ibom State Nigeria is used. The model was simulated
in python 3 development environment using Pycharm.
The load predictions are done on the scaled data which
was segmented into 75% training set and 25% test set.
The results show a good learning behavior for the
training set and the test set as the training loss and the
validation loss did not exceed 10 after 50 epochs. Also,
the mean squared error for the model predictions
is2. 04. Since, only three months hourly data was used
in the model training and validation, a one month
forecasting of the feeder load was conducted using the
developed RNN model.
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1. Introduction

Over the years, various prediction models have been
developed to help electrical load planners have insight
about the future requirements; hence have some level of
precision and accuracy on their proposals [1,2,3].
Nevertheless, there exist some inherent issues which often
lead to some drifts from the expectations. For instance, the
short term load forecast models has been developed by
various researchers who deployed different techniques to
tackle the prediction issues identified [4,5]. Each of these
methods has their peculiar strengths and weaknesses with
respect to parameter sensitivity, precision in prediction, and
training difficulties [6,7].

Some researchers have observed that electrical load
behavior has recursive and periodic pattern which is subject
to the consumers’ activities [8]. Such behavioral patterns

exhibited by the consumers’ load possess real world valued
time series nature. The load characteristic data collection
mechanism often possess variable dynamics over the period
of time under investigation. This variance often stems from
the system inherent properties in-terms of superficial
intrusion and latency. Consequently, prediction precision
and accuracy may significantly vary for different dataset
despite the application of the same prediction or forecasting
model.
A close observation on a typical electrical load data shows
they are random and non-stationary in nature [9]. Their
non-stationary attribute is further characterized by level
transformation, outliers on time series analysis. Any data
point that is located very far from other points within the
cluster is considered as an outlier, and they typically result
due to errors. An unsophisticated prediction models find it
difficult to handle outliers. This is one of the major reasons
prediction errors are large in load forecasting. Level
transformation, on the other hand denotes sudden and
sustained deviation from existing time series data trend.
This usually results from policy, which may involve
technology amendment. This research proposes application
of Long Short Term Memory (LSTM)-based architecture
on recurrent neural network (RNN) to solve the electrical
load prediction and forecasting problems [10,11,12,13].
2. Methodology
2.1 System Design Model
The focus in this work is to present details of Recurrent
Neural Network (RNN)-based injection station load
prediction and forecasting. The two key parameters used as
the input for the model prediction and forecasting are the
feeder (xfdr) and historical injection station load
behavior (xlp). The interconnection of these input forms
nodes and each node has certain weight w, assigned to it
along with a bias factor b; in the activation function, f,.
The system model is presented in Figure 1. The
mathematical representation of the model can be expressed
as follows:

Yo = fa(ER=1 Wi * X + bry) (1)
Where, x,,; is the n‘" input vector, w,; is the distributed
weight factor for the nt" input vector, b,; is the n* bias, N
is the total number of inputs to the system.
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Figure 1: The system model

2.2 The Recurrent Neural Network Architecture

There are various architectures that exist for RNN
model. However, this work adopts the long short term
memory networks (LSTM). The LSTM is an architecture
with various gates which regulates error flow through the
LSTM cells. The architecture is trained through the back-
propagation time technique. With the application of the
LSTM model, the gradient issues are mitigated by rerouting
the invariant error back through time. Notably, LSTM has
five various gates which are non-linear functions and are
interrelated in unique manner. The intrinsic status of the
cells is linearly updated by the LSTM. This characteristic
allows data to be easily transmitted backward across
epochs. The LSTM model used in this work is presented in
Figure 2.

According to the LSTM model in Figure 2, the
content of x; and y, are swapped with the input and output
of the model whereas, h;_q, h;, ¥;_1, and y, represents the
intramural state variables and their content are transmitted
between the cells and the virtual layer.Furthermore, g; and
g» serve as the nonlinear operators which are executed as
hyperbolic tangent. Finally the sigmoid operators (crf)
represents the forget gate, the symbol o, represents the
update gate and o, represents the output gate. The models
for these gates are presented mathematically as follows:
Forget gate:

os[t] = o(Wex[t] + Reylt — 1] + by) )
Candidate state:

h[t] = g (Wpx[t] + Ryy[t — 1] + by) (3)
Update gate:

oyult] = o(Wux[t] + Ryy[t — 1] + by) “)
Cell state:

h[t] = 0, [t]OR[t] + of[t]OR[t — 1] 5)
Output gate:

oo[t] = o(Wpx[t] + Roy[t — 1] + b,) (6)
Output:
ylt] = o,[t]Og. (hltD (7)
Where, x[t] denotes the input vector, W,, W,,, Wy, and W,
denote the weight matrix meted on the corresponding inputs
of the cell, R,, R, , Ry, and Ry states the recurrent
connection weights. Each gate defined in Equation 2,
Equation 4, and Equation 6 has its unique application. The
oy determines the dataset that should be rejected from past
cell state h[t — 1]. The surviving set from forget gate are
parsed to the update gate o, which determines the quantity
of the most recent state h[t] which should be updated with
the most recent member h[t]. The present state of the
LSTM cells is sieved out using g,(-) nonlinear function
and feed through the output gate which filters the actual
output y[t]. Equation 2, Equation 3, Equation 4, and
Equation 6 show that each state relies on the present input
x[t] and the past output y[t — 1]. The diagram in Figure 2
shows that when the forget gate is 1, and the update gate is
0, then the present state is transmitted to the next interval
without any modification.
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Figure 2: The long short term memory networks (LSTM) model

2.4 Simulation of the model

An historical load profile was gathered from Udo udoma
substation in Akwa Ibom State Nigeria. The substation
contains some feeders but this work utilized the dataset for
Udo Udoma feeders. The data entries of Udo Udoma feeder
were taken on hourly basis for four months (from May,
2022 to August, 2022). The total row count for valid data is
2808.

The  model was simulated in python 3 development
environment using Pycharm. First, some relevant python
libraries which include numpy, pandas, matplotlib, scipy,
sklearn, keras, and seaborn were installed. The collated data
were entered in .csv file format before being fed to the
model for prediction and forecast. The different feeder
dataset were applied independently on the test model to
obtain independent results using the RNN model.

The performance of the model is evaluated using Mean
Squared Error (MSE) which is computed as:

A N2
MSE =220 (g)

Where, y; denotes the it" actual value, 9; denotes the it"
predicted value, and n denotes the number of samples
considered.

3 Results and Discussions

3.1 Data cleaning and preprocessing

The raw data collated fromn the substation contains 17
columns of data as presented in Figure 3 however, some of
the columns of records have data types and formats which
are not supported by the machine models adopted in this
research. The relevant columns from the raw dataset in
Figure 3 include “TIME”, “SEC”, “FDR”, “AKA”,
“FDR.17, “UU”, “FDR.2”, “IBB”, “FDR.3”.

The raw dataset is cleaned and in the cleaned dataset, as
presented in Figure 4, all null columns and “Not a Number”
(NaN) columns are replaced with zero. This is to ensure
that the machine learning model can correctly handle the
data.

Each row of the data items are time stamped; that means
that the time stamp for each row is unique; hence, the
“TIME” column is formatted as the unique index for each
data row as presented in Figure 5. Also, data was collated
per hour for each day. The time portion of the date time
object is appended to the date portion to create the
uniqueness.

A segment of the raw load dataset for Udo Udoma is shown
in Figure 6 and Figure 7 shows the corresponding scaled
dataset.
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TIME SEC FDR AKA FDR1 KVA PF RP UU FDR2 IBB FDR3 KVA.1 PE1 RP1 IBE U““""‘.Ids:
TIME
0220500 OO0 55 4 450 25 180 3 1M1 09 55 IS LS NaN NaN NaN NaN NaN
2022-05-01  01/05/2022 .

02:00:00 o200 35 2 150 25 180 3 11 09 55 LS LS NaN NaN NaN NaN NaN
2022-05-01 01/05/2022 ’ 4 .

03:08:00 ox0p 35 3 150 25 180 3 111 09 55 LS LS NaN NaN NaN NaN NaN
zoﬁgz;g; m’osﬁzég 42 4 150 25 180 3 1.1 09 55 LS LS NaN NaN NaN NaN NaN
2022-05-01  01/05/2022 , 5 .

el o500 42 5 150 25 1S Ls 1M1 09 25 IS LS NaN NaN NaN NaN NaN
2022.08-25  25/08/2022

S e00 0o 20 03 LS /s 108 09 03 150 25 170 28 107 09 53 US us
2022-08-25  25/08/2022

e 00 >w00 20 03 US LS 108 09 03 150 25 160 26 107 09 51 US s
2022-08-25  25/08/2022 4 x

e w00 20 03 US /S 108 09 39 150 25 160 26 107 09 51 US s

Figure 3: The cross section of the raw dataset
Unnamed:
TIME SEC FDR AKA FDR1 KVA PF RP UU FDR2 IBB FDR3 KVA.1 PF1 RP1 IBE 16
TIME
2022-05-01 01/05/2022 "
01:00:00 01:00 33 25 150 25 180 3 131 08 55 LS LS 00 00 00 00 0.0
2022-05-01 01/05/2022
02:00:00 02:00 35 20 130 25 180 3 111 09 55 LS LS 00 00 00 00 0.0
2022-05-01 01/05/2022 =
03:00:00 03:00 35 30 150 25 180 3 111 09 55 LS LS 00 00 00 00 00
2022-05-01 01/05/2022 =
04:00:00 04:00 42 40 150 25 180 3 113 09 55 LS LS 00 00 00 00 0.0
2022-05-01 01/05/2022 "
05:00:00 05:00 42 25 150 25 L5 LS 119 09 25 LS LS 00 00 00 00 0.0
2022-08-25  25/03/2022 _ o i
20:00:00 20:00 20 25 LU/S /s 108 09 03 150 25 170 28 107 09 53 00 0.0
2022-08-25 25/08/2022 _
21:00:00 21100 20 25 LSS /S 108 09 03 150 25 160 26 107 09 51 00 0.0
2022-08-25 25/08/2022 _ _
22:00:00 22:00 20 25 LS L/S 108 09 39 150 25 160 26 107 09 51 00 00
Figure 4 : Cross section of cleaned data
WWW.jmest.org
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DatetimeIndex(['2022-05-01 01:00:00',
'2022-05-01 03:00:00',
'2022-05-01 05:00:00',
'2022-05-01 07:00:00',
'2022-05-01 09:00:00',

'2022-08-25 15:00:00',
'2022-08-25 17:00:00',
'2022-08-25 19:00:00',
'2022-08-25 21:00:00',
'2022-08-25 23:00:00',
dtype='datetime64[ns]’,

'2022-05-01 02:00:00',
'2022-05-01 04:00:00',
'2022-05-01 06:00:00",
'2022-05-01 08:00:00',
'2022-05-01 10:00:00',

'2022-08-25 16:00:00',
'2022-08-25 18:00:00',
'2022-08-25 20:00:00',
'2022-08-25 22:00:00',
'2022-08-26 00:00:00'],

name="TIME', length=2808, freq=None)

Figure 5: Cross section of the training data index
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Figure 6: Un-scaled data slice for Udo Udoma dataset
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Figure 7: Visualization of raw data showing the historical load and feeder state for Udo Udoma

3.2 Result on the load prediction based on the RNN

Also, graphical representation of the raw dataset for Udo

Model
The load predictions are done on the scaled data.
Furthermore, in order to make predictions, the scaled
dataset was segmented into 75% training set and 25% test
set. The model prediction output is presented in Figure 8 for
the Udo Udoma injection substation load prediction.

Udoma feeder is shown in Figure 9 while the graphical
representation of the 75% training dataset, 25% test dataset
(prediction set), and forecast for the next 30 days for Udo
Udoma feeder is shown in Figure 10. The results presented
show a good learning behavior for the training set and the
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test set as the training loss and the validation loss did not exceed 10 after 50 epochs.
TrainX TrainY

0 [[-1.0202008579150579, 0.05054877894658822], [... [-1.0316221398626126)
1 [[-1.0202008579150579, 0.05054877894658822], [.. [-1.0316221398626126]
[(-1.0202008579150579, 0.05054877894658822), [... [-1.0316221398626126]

[[-1.0202008579150579, 0.05054877894658822], [.. [-1.0316221398626126]

B oOwWwoN

[[-1.0202008579150579, -0.10095727451034596), ... [-1.0316221398626126)

2779 [[0.8719248513964959, -0.10095727451034596], [..  [0.8719248513964959]
2780 [[0.8084732850211923, -0.10600747629224377), [..  [0.8719248513964959]
2781 [[0.8084732850211923, -0.10600747629224377], [..  [0.8719248513964959]
2782 [[0.8084732850211923, -0.10600747629224377), [..  [0.8719248513964959]
2783 [[0.8084732850211923, -0.10600747629224377], [..  [0.8719248513964959]

2784 rows x 2 columns
Figure 8: Prediction output for Udo Udoma dataset
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Figure 9: Graphical representation of the raw dataset for Udo Udoma
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Figure 10: Graphical representation of the 70% training dataset, 30% test dataset (prediction set), and forecast for the next 30
days for Udo Udoma

3.3 Performance Evaluation for the RNN/LSTM
Architecture

The LSTM model was constructed using the python
Sequential function with 64 neurons. The activation
function was set to ‘relu’” while the two target data columns
(the historical load data and the feeder state) was fed to the
input of the LSTM. The model was compiled using an
optimizer called ‘Adam’ while the MSE was computed for
each of the prediction. Analysis of the model performance

was performed on two metrics which include the training
loss and the validation loss. Training loss shows the
efficiency of the model fitness on the training data, whereas
validation loss shows the efficiency of the model fitness on
the new data. The dataset was trained for 50 epochs. The
results in Figure 11 show the training and validation loss
for Udo Udoma load data training after 50 epochs. From the
results presented, the MSE for the model predictions
is 2.04.
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Figure 11: Training loss versus validation loss for dataset training of Udo Udoma data after 50 epochs
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