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Abstract— Weather forecasts  have a broad 
range of applications, making them indispensable 
in numerous fields. Accurate weather forecasting 
enables informed decision-making, enhances 
safety, and supports efficient resource 
management. With the random nature of  the 
atmosphere and the large computational power 
required when using traditional methods for 
forecasting, there arose a need to develop other 
methods using deep learning. In this paper, a two-
layer Long Short-Term Memory model was 
developed and used to predict a fourteen (14) 
hours period of weather data. A stationarity check 
using Augmented Dickey-Fuller (ADF) Test  was 
performed for the historical data obtained for 
Akure metropolis in Nigeria. With the data passing 
the test, the LSTM forecast model was built and 
prediction was made. The Root Mean Squared 
Error (RMSE) values of 0.078, 0.034, 1.531, 0.363, 
and 0.460 were obtained after prediciton for 
visibility, precipitation, humidity, atmospheric 
pressure, and temperature respectively. LSTM 
gave a promising performance in forecasting 
weather entities.  

Keywords— forecasting; weather prediction; 
long short-term memory; stationarity check. 

I.  INTRODUCTION  

Weather forecasting plays a crucial role across 
various sectors, including science and agriculture, by 
predicting the state of the atmosphere at specific times 
and locations. This information is essential for planning 
daily activities, designing structures, and formulating 
policies. The process involves collecting quantitative 
data about the current atmospheric conditions and 
applying scientific principles to project future changes. 
However, the chaotic nature of the atmosphere, the 
substantial computational power required to solve 
atmospheric equations, measurement errors in initial 
conditions, and an incomplete understanding of 
atmospheric processes contribute to a decline in 
forecast accuracy over time [1]. Weather warnings 
protect life and property, while temperature and 
precipitation forecasts are crucial for agriculture and 
commodity markets. Utility companies use temperature 
forecasts to estimate demand. Daily weather forecasts 
help individuals decide what to wear and plan 
activities, particularly those affected by heavy rain, 

snow, and wind chill [1][2]. Weather forecasts have a 
broad range of applications, making them 
indispensable in numerous fields. Accurate weather 
forecasting enables informed decision-making, 
enhances safety, and supports efficient resource 
management. Consequently, addressing this complex 
task has always been a priority in research [3]. Most 
weather stations globally utilize numerical weather 
prediction models, such as the Weather Research and 
Forecasting (WRF) model, since its public release in 
2000. These models require substantial computational 
power to solve large systems of non-linear equations 
[4].  In addressing this problem, an alternate method is 
to use machine learning algorithms adaptation. 
Machine learning is a promising data-driven method 
that uses historical data to make predictions. It can be 
divided into two (2) forms, namely, the shallow and 
deep learning [3]. The choice of either learning 
algorithm is determined by application of use, 
programming constraints and advantages. 

The advantages of deep learning models for use in 
weather forecasting are extensive over shallow 
learning techniques. Deep learning models can 
process and analyze large sets of complex and high-
dimensional data, making them well-suited for handling 
the intricate patterns in meteorological data [5]. Unlike 
traditional models, deep learning algorithms can 
automatically extract relevant features from raw data, 
reducing the need for manual feature engineering [6]. 
Also, deep learning models have been found to be 
able to capture non-linear relationships and 
interactions, thereby improving accuracy [7]. In 
adaptation to new and diverse datasets, deep learning 
models does better than its shallow counterpart, 
leading to flexibility and scalability for various weather 
predictions [8]. Further advantage was highlighted in 
[9], as being able to learn the entire mapping from 
input data to prediction in a single framework, and 
integration with big data technologies [10].  

Furthermore, models like Long Short-Term Memory 
(LSTM) networks are particularly effective at capturing 
temporal dependencies and trends over time, which 
are crucial for accurate weather forecasting [11], 
thereby informing its choice in this paper. This paper 
utilizes the Long Short-Term Memory (LSTM) networks 
for weather data forecasting using two-layered network 
architecture. The design methodology involved pre-
processing of weather data, normalization and 
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transformation of data, data stationarity test, definition 
of Long Short-Term Memory (LSTM) model 
architecture, training and validation, forecasting and 
evaluation. 

II. LITERATURE REVIEW 

A. Related Work 

Several weather forecasting research are available 
in literature. A few are selected in this section. 
Weather is  considered to be  dynamic, multi-
dimensional, and non-linear in nature [12] . Extensive 
research has led to the development of various 
methods for weather prediction. Traditionally, the most 
accurate forecasting has relied on mathematical 
simulations, which use generative techniques to model 
atmospheric dynamics through physical simulations 
[13]. In contrast, statistical and data-centric 
approaches have facilitated the creation of numerous 
machine learning models. [14] developed a deep 
neural network-based feature representation model 
that primarily employs stacked autoencoders to 
construct the Deep Neural network (DNN) and utilizes 
support vector regression for prediction. A similar 
approach is documented in [15] where stacked 
denoising autoencoders were used to  construct a 
deep network. In [16], weather forecasting accuracy 
was aimed at by applying machine learning 
techniques, specifically to predict the maximum and 
minimum temperatures over a seven-day period using 
weather data from the past two days. A  linear 
regression model and variation of a functional 
regression model were employed. The linear 
regression model, which is straightforward and 
effective for short-term data, outperformed the 
functional regression model in this context. The 
functional regression model, designed to capture 
weather trends, was less effective possibly due to the 
short two-day data window. 

 In [17], a simple time-series approach to model 
and forecast daily average temperatures in U.S. cities, 
particularly for use in the weather derivatives market 
was employed . The findings indicated  that time-series 
modeling effectively captures significant conditional 
mean and variance dynamics in daily average 
temperature, as well as distinct differences between 
temperature distributions and temperature surprises. 
Furthermore, in [18], a novel, lightweight, data-driven 
weather forecasting model utilizing Long Short-Term 
Memory (LSTM) and Temporal Convolutional 
Networks (TCN) was proposed. It was concluded that 
the  proposed lightweight model outperforms the 
complex Weather Research and Forecasting WRF 
model, showing potential for efficient and accurate 
weather forecasting up to 12 hours. 

For forecasting severe convective weather (SCW), 
the authors in [19] used a six-layer convolutional 
neural network (CNN) trained with predictors. 
Assessing the model’s performance using Global 
Forecast System (GFS), the deep learning model 
outperformed subjective forecasts by forecasters, 
significantly improving threat scores for thunderstorm, 

heavy rain, hail, and convective gusts by 16.1%, 
33.2%, 178%, and 55.7% respectively. This model is 
now operational at the National Meteorological Center 
of China, aiding  SCW forecasting across the country. 
In [20], for the prediction of air temperature using 
historical data, two methods were compared.The  
standard neural network against a deep learning 
network, specifically one using Stacked Denoising 
Auto-Encoders (SDAE) were evaluated. The empirical 
results demonstrate that the deep neural network with 
SDAE outperformed the standard multilayer 
feedforward network for this noisy time series 
prediction task.  

Adaptive learning with bidirectional LSTM model 
was employed in the work done in [21], the result 
showed that adaptive learning with a bidirectional 
LSTM model reduced prediction error by 45% 
compared to baseline models. Another method utilized 
by [22] was a stacked Auto-Encoder. It was used to 
simulate 30 years of hourly weather data. 
Experimental results show that incorporating these 
newly learned features into classical models improves 
accuracy in time series forecasting. 

B. Long Short-Term Memory (LSTM) Model 

LSTM was introduced by Hochreiter and 
Schmidhuber in 1997 [11].  The model  is a robust 
recurrent neural network specifically designed to 
address the exploding and vanishing gradient issues 
that commonly occur when learning long-term 
dependencies, even with substantial time lags [23].  
Overall, this issue can be mitigated by employing a 
constant error carousel (CEC), which preserves the 
error signal within each unit's cell. Notably, these cells 
function as recurrent networks themselves, enhanced 
by the addition of an input gate and an output gate, 
collectively forming the memory cell. The self-recurrent 
connections provide feedback with a lag of one time 
step [24]. 

A standard LSTM unit consists of a cell, an input 
gate, an output gate, and a forget gate. The forget gate 
was not part of the initial design of LSTM, but was 
added by [25] in order that the network will be able to 
reset its state. The cell retains values over arbitrary 
time intervals, while the three gates control the flow of 
information related to the cell. Figure 1 shows a simple 
LSTM model architecture with the gates, input, and 
output.  

Assuming a network that has N processing blocks 
and M number of inputs, and activation functions for 

the gates and memory cells are σ and g respectively, 
In the block input, the block component denoted by zt  
are updated by combining the present input xt and the 

output of the LSTM unit ht−1, thereby we obtain [26], 

zt = g(Uzxt + Rzht−1 + bz)   (1) 

where Uz and Rz are the weights associated with xt 
and ht−1 , respectively, while bz  is the bias weight 
factor. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 6, June - 2024  

www.jmest.org 

JMESTN42354399 16968 

At the input gate, with activation function 

represented by it, we have, 

it = σ(Uixt + Riht−1 + ρi ⊗ ct−1 + bi)  (2) 

where ⨂  denotes point-wise multiplication, Ui , Ri , 
and ρi  are the weights of  xt , ht−1 , and ct−1 
respectively, while bi is the bias weight factor for the 
input block. 

At the forget gate with activation fucntion of ft, the 
LSTM unit makes a choice of the information to be 
removed from its previous cell state ct−1, therefore we 
have, 

ft = σ(Ufxt + Rfht−1 + ρf⨂ct−1 + bf)  (3) 

where  Uf , Rf  and ρf  are the weights associated 
with xt, ht−1 and ct−1 respectively, while  bf is the bias 
weight vector. 

Now, computing the cell value, the block input zt, 
and input gate, it , and the forget gate, ft  values are 
combined with the previous cell value,  therefore, we 
have,  

ct = zt⨂it + ct−1⨂ft    (4) 

In the output gate terminal with activation function 
of ot, the output value is calculated as:  

ot = σ(Uoxt + Roht−1 + ρo⨂ct−1 + bo)  (5) 

where  Uo , Ro  and ρo  are the weights associated 

with xt, ht−1 and ct−1 respectively, while  bo is the bias 
weight vector. 

Finally, the block output is combined to give, 

ht = g(ct)⨂ot    (6) 

 

 
Fig. 1. Basic LSTM Model Structure. 

III. METHODOLOGY 

A. Dataset 

Atmospheric data were obtained from the World 
Weather Online in Hong Kong for Akure, Ondo State, 
Nigeria,  from July 2009 to October 2022.  The 
weather data comprised of Atmospheric pressure, 
Visibility, Precipitation, Temperature and Humidity, and 
it is a hourly time-series data. 

B. Software 

Data preparation, formatting and programming was 
conducted using Python 3.9 [27], using the packages 
imported are the numpy, panda, matplot and the 
seaborn libraries. The LSTM model was built with 
keras on Google TensorFlow, and was formulated 
using the seaborn and sklearn libraries.  For the error 
calculation, the math and sklearn libraries were 
employed. 

C. Data Preparation 

The data preparation algorithm imports essential 
libraries, configures plotting settings, loads data into a 
pandas dataframe, and performs data cleaning and 
preprocessing. The steps include handling duplicates, 
normalizing data, dealing with missing values, and 
transforming data for analysis. This process prepared 
the dataset for further machine learning tasks.The 
pesudocode is presented as : 

IMPORT TensorFlow AS tf 
IMPORT pandas AS pd 
IMPORT numpy AS np 
IMPORT matplotlib.pyplot AS plt 
IMPORT seaborn AS sns 
IMPORT datetime 
CONFIGURE PLOTTING 
   ENABLE inline plotting for IPython 
   SET seaborn and matplotlib DPI settings for figures 
   SET seaborn context and style 
   CONFIGURE matplotlib to use SVG format for outputs 
LOAD DATA into DataFrame 
IDENTIFY and REMOVE duplicated or irrelevant features in 
DataFrame 
PERFORM further data cleaning and preprocessing: 
   - Normalize data if necessary 
   - Handle missing values 
   - Transform data for analysis 
END 
 

D. Stationarity Check 

After the normalization, the stationarity check was 
performed. Stationarity, for time-series analysis refers 
to a statistical property where the statistical 
characteristics of any data, such as mean, variance, 
and auto-correlation structure, do not change over time 
[28]. When a time-series is stationary, it makes the 
series easier to model and predict. The Augmented 
Dickey-Fuller (ADF) Test was used to carry out the 
stationarity test check, and  the alpha value, which is 
the boundary that must not be exceeded was set to 
0.05.   Figs. 2, 3, 4, 5, and 6 presents the snippets of 
stationarity check for visibility, precipitation, humidity, 
temperature and pressure respectively. The x-axis is in 
time, while the y-axis is the time series data ( pressure, 
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humidity, temperature, visibility and rainfall). The 
stationarity check result for visibility was obtained to be 
2.978E-24, while for precipitation, 0.0 was obtained. 
For pressure, humidity and temperature, the 
stationarity check results were 5.16E-17, 3.64E-13 and 
6.74E-19 respectively. These values showed that the 
data is stationary over time.  

The pseudocode used is presented as: 

IMPORT matplotlib.pyplot, pandas, pmdarima.arima, 
statsmodels.tsa.stattools, tensorflow.keras, sklearn.preprocessing 
LOAD data 
SET 'datetime' as index of DataFrame 
PLOT 'humidity' time series 
PERFORM stationarity tests: 
    ADFTest with alpha=0.05 
    Augmented Dickey-Fuller test, PRINT p-value 
IF data non-stationary, consider differencing or transformations 
PREPROCESS data for neural network: 
    SCALE features using MinMaxScaler 
    PREPARE training data set from selected columns, CONVERT to 
float 
BUILD LSTM model: 
    DEFINE Sequential model 
    ADD LSTM layers 
    ADD Dropout layers (if needed) 
    ADD Dense output layer 
    COMPILE model with optimizer and loss function 
TRAIN model on training data, SET epochs and batch size 
FORECAST using the trained model 
END 

 

Fig. 2. Stationarity check graph for Visibility 

 

Fig. 3. Stationarity check graph for Precipitation 

 

Fig. 4. Stationarity Check Graph for Humidity 

 

Fig. 5. Stationarity check graph for Temperature 

 

Fig. 6. Stationarity check graph for Pressure 

 

E. Forecasting Model Formulation and Training 

After the stationarity check was done, the data was 
preprocessed for neural network usage by using the 
MinMaxScaler function to normalize the features to a 
specific range.  The data was prepared for training by 
choosing the relevant features for training and 
conversion of data type to float.  

Thereafter, the sequential model was defined by 
using a linear stack of layers, and the LSTM layers 
were added in order to capture temporal depedencies.  
To prevent overfitting, a dropout  layer was added. To 
fully produce the output, a dense output layer  was 
connected. For compilation, the ‘adam’  optimizer and 
mean squared error was specified. 

The model was fitted to the training data by 
specifying the number of epochs and batch size. The 
number of epoch used was 5, while the batch size was 
16. Fig. 7 presents the LSTM model architecture  
employed for the forecasting of weather data. 
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Fig. 7. The LSTM network layout 

F. Prediction 

The number of hours of prediction was defined and 
specified for fourteen (14) hours.  Taking the last 
number of hours for prediciton samples from the 
training data, prediction was made using the model. 
Next, a range of date starting from the end of the 
training dates and spanning the number of prediciton 
hours was created.  Therafter, the predicitons were 
repeated across the number of features in the original 
training data frame for the purpose of inverse scaling.  
After the inverse scaling, the timestamps were 
converted back to dates and a construction of a data 
frame containing the forecast dates and the predicted 
weather entity were done.  Finally, using the matplotlib 
library, the actual weather entity was plotted. 

 

IV. RESULTS 

A. Training and Validation losses 

The training and  validation loss values for visibility, 
precipitation, humidity, temperature, and pressure is 
stated in Tables I to V. The training and validation plot 
for the number of epochs for the five weather entities 
are presented in Figs. 8 to 12.  Significant reduction in 
validation loss values as the training loss reduces 
indicates that the model is not experiencing overfitting- 
that is the model has learned to fit the training data too 
closely, including noise or irrelevant patterns, and does 
not generalize well to new data.  

 

TABLE I.  TRAINING AND VALIDATION LOSS FOR VISIBILITY 

Number of 

Epoch 

Training Loss Validation 

Loss 

1 0.0252 0.0077 

2 0.0114 0.0075 

3 0.0097 0.0053 

4 0.0090 0.0060 

5 0.0087 0.0056 

 

TABLE II.   TRAINING AND VALIDATION LOSS FOR PRECIPITATION 

Number of 

Epoch 

Training Loss Validation 

Loss 

1 0.000450 0.000252 

2 0.000347 0.000258 

3 0.000305 0.000194 

4 0.000282 0.000164 

5 0.000261 0.000218 

TABLE III.  TRAINING AND VALIDATION LOSS FOR HUMIDITY 

Number of 

Epoch 

Training Loss Validation 

Loss 

1 0.0103 0.00170 

2 0.0028 0.00088 

3 0.0022 0.00087 

4 0.0020 0.00060 

5 0.0019 0.00063 

 

TABLE IV.   TRAINING AND VALIDATION LOSS FOR TEMPERATURE 

Number of 

Epoch 

Training Loss Validation 

Loss 

1 0.00390 0.00069 

2 0.00130 0.00047 

3 0.0011 0.00045 

4 0.00099 0.00068 

5 0.00091 0.00035 

TABLE V.  TRAINING AND VALIDATION LOSS FOR PRESSURE 

Number of 

Epoch 

Training Loss Validation 

Loss 

1 0.0065 0.0019 

2 0.0019 0.0011 

3 0.0016 0.0010 

4 0.0015 0.0013 

5 0.0014 0.00089 
 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 6, June - 2024  

www.jmest.org 

JMESTN42354399 16971 

 

Fig. 8. Training and Validation loss plot for Visibility 

 

 

Fig. 9. Training and Validation loss plot for Precipitation 

 

 

Fig. 10. Training and Validation loss plot for Humidity 

 

Fig. 11. Training and Validation loss plot for Temperature 

 

Fig. 12. Training and Validation loss plot for Pressure 

 

B. Prediction Outcome 

The predicted and  expected  values for the five 
weather entities were plotted and are shown in Fig. 13 
to 17.   The figures depict the closeness of the original 
values and the predicted values. The use of LSTM 
gave a close margin of error, thereby showing the 
performance of this deep learning method for weather 
forecasting. The Root Mean Squared Error (RMSE) 
value for visibility and precipitation was obtained to be 
0.078 and 0.034 respectively. For humidity, presure 
and temperature, the RMSE values obtained were 
1.531, 0.363, and 0.460 respectively. A lower RMSE 
value indicates a better fit between the predicted and 
actual values. For visibility, the RMSE of 0.078 
suggests that, on average, the forecasted visibility 
values deviates by approximately 0.078 units from the 
actual visibility values. Similarly, for precipitation, the 
RMSE of 0.034 indicates an average deviation of 
approximately 0.034 units between the predicted and 
actual rainfall values. This deviation is applcable to 
humidity, pressure and temperature. 
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Fig. 13. Original and Predicted values for Visibility 

 

 
Fig. 14. Original and Predicted values for Precipitation 

 

 

Fig. 15. Original and Predicted values for Humidity 

 

 

Fig. 16. Original and Predicted values for  Pressure 

 

Fig. 17. Original and Predicted values for  Temperature 

 

V. CONCLUSION 

In weather forecasting, different statistical and 
traditional methods have been employed. Machine  
learning tools have recently found usage in predicting 
the state of the atmosphere , therefore the LSTM- 
which is a deep learning model  was used to predict 
the next fourteen hours of weather data. A two-layer 
LSTM network architecture was modelled in this paper.  
It was clearly observed that the validation losses 
obtained were lower than the training loss, thereby 
indicating no overfitting. The measure of error used 
was the Root Mean Squared Error (RMSE), with 
values of 0.078, 0.034, 1.531, 0.363, 0.460 for 
visibility, precipitation, humidity, pressure and 
temperature respectively.  These results shows that 
LSTM is a  deep learning model that can accurately 
forecast and make predictions with less margin of 
error. Future work will be to test different variants of 
LSTM and make a comparison with other deep 
learning method.   

ACKNOWLEDGMENT  

Olawuni Bayo is duly acknoweledged for the help in 
the research. 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 6, June - 2024  

www.jmest.org 

JMESTN42354399 16973 

REFERENCES 

[1] Abhishek, K., Singh, M. P., Ghosh, S., and Anand, 
A, “Weather forecasting model using artificial 
neural network”. Procedia Technology, 4, 2012, 
pp.  311-318. 

[2] Böcker, L., Dijst, M., and Prillwitz, J, “Impact of 
everyday weather on individual daily travel 
behaviours in perspective: a literature 
review”. Transport reviews, 33(1), 2013, pp. 71-
91. 

[3] Al Sadeque, Z., and Bui, F. M, “A deep learning 
approach to predict weather data using cascaded 
LSTM network”. In 2020 IEEE Canadian 
conference on electrical and computer 
engineering (CCECE) , 2020, pp. 1-5 

[4] Powers, J. G., Klemp, J. B., Skamarock, W. C., 
Davis, C. A., Dudhia, J., Gill, D. O., and  Duda, M. 
G, “The weather research and forecasting model: 
Overview, system efforts, and future directions”. 
Bulletin of the American Meteorological 
Society, 98(8), 2017, pp.  1717-1737. 

[5] Goodfellow, I., Bengio, Y., and Courville, A, 
“ Deep learning”. MIT press, 2016. 

[6] LeCun, Y., Bengio, Y., and Hinton, G, “Deep 
learning”. nature, 521(7553), 2015, pp. 436-444. 

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E.  
“Imagenet classification with deep convolutional 
neural networks”. Advances in neural information 
processing systems, 25, 2012. 

[8] Schmidhuber, J, “Deep learning in neural 
networks: An overview”. Neural networks, 61, 
2015, pp. 85-117. 

[9] Bengio, Y., Courville, A., and Vincent, P, 
“Representation learning: A review and new 
perspectives”. IEEE transactions on pattern 
analysis and machine intelligence, 35(8), 2013, 
pp. 1798-1828. 

[10] Chen, X. W., and Lin, X, “Big data deep learning: 
challenges and perspectives”, IEEE access, 2, 
2014, pp. 514-525. 

[11] Hochreiter, S., and Schmidhuber, J, “Long short-
term memory”. Neural computation, 9(8), 1997, 
pp.  1735-1780. 

[12] Maqsood, I., Khan, M. R., and Abraham, A,  “An 
ensemble of neural networks for weather 
forecasting”, Neural Computing and 
Applications, 13, 2004, pp. 112-122. 

[13]  Grover, A., Kapoor, A., and Horvitz, E, “A deep 
hybrid model for weather forecasting” , 
In Proceedings of the 21th ACM SIGKDD 
international conference on knowledge discovery 
and data mining , 2015, pp. 379-386. 

[14] Liu, J. N., Hu, Y., You, J. J., and Chan, P. W, 
“Deep neural network based feature 
representation for weather forecasting”, 
In Proceedings on the International Conference 
on Artificial Intelligence (ICAI) (p. 1). The Steering 
Committee of The World Congress in Computer 
Science, Computer Engineering and Applied 
Computing (WorldComp), 2014. 

[15] Hossain, M., Rekabdar, B., Louis, S. J., and 
Dascalu, S, “Forecasting the weather of Nevada: 

A deep learning approach”. In 2015 international 
joint conference on neural networks (IJCNN), 
2015, pp. 1-6,  IEEE. 

[16] Holmstrom, M., Liu, D., and Vo, C, “Machine 
learning applied to weather forecasting”. Meteorol. 
Appl, 10, 2016, pp. 1-5. 

[17] Campbell, S. D., and Diebold, F. X, “Weather 
forecasting for weather derivatives”. Journal of the 
American Statistical Association, 100(469), 2005, 
pp. 6-16. 

[18] Hewage, P., Trovati, M., Pereira, E., and Behera, 
A, “Deep learning-based effective fine-grained 
weather forecasting model”. Pattern Analysis and 
Applications, 24(1), 2021, pp. 343-366. 

[19] Zhou, K., Zheng, Y., Li, B., Dong, W., and Zhang, 
X, “Forecasting different types of convective 
weather: A deep learning approach”, Journal of 
Meteorological Research, 33,   2019, pp. 797-809. 

[20] M. Hossain, B. Rekabdar, S. J. Louis and S. 
Dascalu, "Forecasting the weather of Nevada: A 
deep learning approach," 2015 International Joint 
Conference on Neural Networks (IJCNN), 
Killarney, Ireland, 2015, pp. 1-6, doi: 
10.1109/IJCNN.2015.7280812. 

[21] Abdulla, N., Demirci, M., and Ozdemir, S, “Design 
and evaluation of adaptive deep learning models 
for weather forecasting”, Engineering Applications 
of Artificial Intelligence, 116, 2022, pp. 105440. 

[22] Liu, J.N.K., Hu, Y., He, Y., Chan, P.W., and Lai, L, 
“Deep Neural Network Modeling for Big Data 
Weather Forecasting”,  In: Pedrycz, W., Chen, 
SM. (eds) Information Granularity, Big Data, and 
Computational Intelligence. Studies in Big Data, 
vol 8. Springer, 2015. https://doi.org/10.1007/978-
3-319-08254-7_19 

[23] Hochreiter, S., Schmidhuber, J,  “Lstm can solve 
hard long time lag problems”. In: M.C. Mozer, M.I. 
Jordan (eds.) Advances in Neural Information 
Processing Systems 9, pp. 473–479. MIT Press 
(1997) 

[24] Yu, Y., Si, X., Hu, C., and Zhang, J,  “A review of 
recurrent neural networks: LSTM cells and 
network architectures”. Neural computation, 31(7), 
2019, pp. 1235-1270. 

[25] Gers, F. A., Schmidhuber, J., and Cummins, F, 
“Learning to forget: Continual prediction with 
LSTM”,  Neural computation, 12(10), 2000, pp. 
2451-2471. 

[26] Van Houdt, G., Mosquera, C., and Nápoles, G, “A 
review on the long short-term memory 
model”, Artificial Intelligence Review, 53(8), 2020, 
pp. 5929-5955.. 

[27] Python Software Foundation, 2021, Python 3.9.13 
documentation, Avaliable at Download — Python 
3.9.13 documentation 

[28] Kočenda, E., and Černý, A, “Elements of time 
series econometrics: An applied approach”. 
Charles University in Prague, Karolinum Press, 
2015. 

 

http://www.jmest.org/
https://doi.org/10.1007/978-3-319-08254-7_19
https://doi.org/10.1007/978-3-319-08254-7_19
https://docs.python.org/release/3.9.13/download.html
https://docs.python.org/release/3.9.13/download.html

