
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16966

Weather Data Forecasting Using Long Short-
Term Memory Model

Ibukunoluwa Adetutu Olajide

Department of Electrical and Electronics Engineering
The Federal University of Technology,

Akure, Nigeria
iaadebanjo@futa.edu.ng

Abstract— Weather forecasts have a broad
range of applications, making them indispensable
in numerous fields. Accurate weather forecasting
enables informed decision-making, enhances
safety, and supports efficient resource
management. With the random nature of the
atmosphere and the large computational power
required when using traditional methods for
forecasting, there arose a need to develop other
methods using deep learning. In this paper, a two-
layer Long Short-Term Memory model was
developed and used to predict a fourteen (14)
hours period of weather data. A stationarity check
using Augmented Dickey-Fuller (ADF) Test was
performed for the historical data obtained for
Akure metropolis in Nigeria. With the data passing
the test, the LSTM forecast model was built and
prediction was made. The Root Mean Squared
Error (RMSE) values of 0.078, 0.034, 1.531, 0.363,
and 0.460 were obtained after prediciton for
visibility, precipitation, humidity, atmospheric
pressure, and temperature respectively. LSTM
gave a promising performance in forecasting
weather entities.

Keywords— forecasting; weather prediction;
long short-term memory; stationarity check.

I. INTRODUCTION

Weather forecasting plays a crucial role across
various sectors, including science and agriculture, by
predicting the state of the atmosphere at specific times
and locations. This information is essential for planning
daily activities, designing structures, and formulating
policies. The process involves collecting quantitative
data about the current atmospheric conditions and
applying scientific principles to project future changes.
However, the chaotic nature of the atmosphere, the
substantial computational power required to solve
atmospheric equations, measurement errors in initial
conditions, and an incomplete understanding of
atmospheric processes contribute to a decline in
forecast accuracy over time [1]. Weather warnings
protect life and property, while temperature and
precipitation forecasts are crucial for agriculture and
commodity markets. Utility companies use temperature
forecasts to estimate demand. Daily weather forecasts
help individuals decide what to wear and plan
activities, particularly those affected by heavy rain,

snow, and wind chill [1][2]. Weather forecasts have a
broad range of applications, making them
indispensable in numerous fields. Accurate weather
forecasting enables informed decision-making,
enhances safety, and supports efficient resource
management. Consequently, addressing this complex
task has always been a priority in research [3]. Most
weather stations globally utilize numerical weather
prediction models, such as the Weather Research and
Forecasting (WRF) model, since its public release in
2000. These models require substantial computational
power to solve large systems of non-linear equations
[4]. In addressing this problem, an alternate method is
to use machine learning algorithms adaptation.
Machine learning is a promising data-driven method
that uses historical data to make predictions. It can be
divided into two (2) forms, namely, the shallow and
deep learning [3]. The choice of either learning
algorithm is determined by application of use,
programming constraints and advantages.

The advantages of deep learning models for use in
weather forecasting are extensive over shallow
learning techniques. Deep learning models can
process and analyze large sets of complex and high-
dimensional data, making them well-suited for handling
the intricate patterns in meteorological data [5]. Unlike
traditional models, deep learning algorithms can
automatically extract relevant features from raw data,
reducing the need for manual feature engineering [6].
Also, deep learning models have been found to be
able to capture non-linear relationships and
interactions, thereby improving accuracy [7]. In
adaptation to new and diverse datasets, deep learning
models does better than its shallow counterpart,
leading to flexibility and scalability for various weather
predictions [8]. Further advantage was highlighted in
[9], as being able to learn the entire mapping from
input data to prediction in a single framework, and
integration with big data technologies [10].

Furthermore, models like Long Short-Term Memory
(LSTM) networks are particularly effective at capturing
temporal dependencies and trends over time, which
are crucial for accurate weather forecasting [11],
thereby informing its choice in this paper. This paper
utilizes the Long Short-Term Memory (LSTM) networks
for weather data forecasting using two-layered network
architecture. The design methodology involved pre-
processing of weather data, normalization and

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16967

transformation of data, data stationarity test, definition
of Long Short-Term Memory (LSTM) model
architecture, training and validation, forecasting and
evaluation.

II. LITERATURE REVIEW

A. Related Work

Several weather forecasting research are available
in literature. A few are selected in this section.
Weather is considered to be dynamic, multi-
dimensional, and non-linear in nature [12] . Extensive
research has led to the development of various
methods for weather prediction. Traditionally, the most
accurate forecasting has relied on mathematical
simulations, which use generative techniques to model
atmospheric dynamics through physical simulations
[13]. In contrast, statistical and data-centric
approaches have facilitated the creation of numerous
machine learning models. [14] developed a deep
neural network-based feature representation model
that primarily employs stacked autoencoders to
construct the Deep Neural network (DNN) and utilizes
support vector regression for prediction. A similar
approach is documented in [15] where stacked
denoising autoencoders were used to construct a
deep network. In [16], weather forecasting accuracy
was aimed at by applying machine learning
techniques, specifically to predict the maximum and
minimum temperatures over a seven-day period using
weather data from the past two days. A linear
regression model and variation of a functional
regression model were employed. The linear
regression model, which is straightforward and
effective for short-term data, outperformed the
functional regression model in this context. The
functional regression model, designed to capture
weather trends, was less effective possibly due to the
short two-day data window.

 In [17], a simple time-series approach to model
and forecast daily average temperatures in U.S. cities,
particularly for use in the weather derivatives market
was employed . The findings indicated that time-series
modeling effectively captures significant conditional
mean and variance dynamics in daily average
temperature, as well as distinct differences between
temperature distributions and temperature surprises.
Furthermore, in [18], a novel, lightweight, data-driven
weather forecasting model utilizing Long Short-Term
Memory (LSTM) and Temporal Convolutional
Networks (TCN) was proposed. It was concluded that
the proposed lightweight model outperforms the
complex Weather Research and Forecasting WRF
model, showing potential for efficient and accurate
weather forecasting up to 12 hours.

For forecasting severe convective weather (SCW),
the authors in [19] used a six-layer convolutional
neural network (CNN) trained with predictors.
Assessing the model’s performance using Global
Forecast System (GFS), the deep learning model
outperformed subjective forecasts by forecasters,
significantly improving threat scores for thunderstorm,

heavy rain, hail, and convective gusts by 16.1%,
33.2%, 178%, and 55.7% respectively. This model is
now operational at the National Meteorological Center
of China, aiding SCW forecasting across the country.
In [20], for the prediction of air temperature using
historical data, two methods were compared.The
standard neural network against a deep learning
network, specifically one using Stacked Denoising
Auto-Encoders (SDAE) were evaluated. The empirical
results demonstrate that the deep neural network with
SDAE outperformed the standard multilayer
feedforward network for this noisy time series
prediction task.

Adaptive learning with bidirectional LSTM model
was employed in the work done in [21], the result
showed that adaptive learning with a bidirectional
LSTM model reduced prediction error by 45%
compared to baseline models. Another method utilized
by [22] was a stacked Auto-Encoder. It was used to
simulate 30 years of hourly weather data.
Experimental results show that incorporating these
newly learned features into classical models improves
accuracy in time series forecasting.

B. Long Short-Term Memory (LSTM) Model

LSTM was introduced by Hochreiter and
Schmidhuber in 1997 [11]. The model is a robust
recurrent neural network specifically designed to
address the exploding and vanishing gradient issues
that commonly occur when learning long-term
dependencies, even with substantial time lags [23].
Overall, this issue can be mitigated by employing a
constant error carousel (CEC), which preserves the
error signal within each unit's cell. Notably, these cells
function as recurrent networks themselves, enhanced
by the addition of an input gate and an output gate,
collectively forming the memory cell. The self-recurrent
connections provide feedback with a lag of one time
step [24].

A standard LSTM unit consists of a cell, an input
gate, an output gate, and a forget gate. The forget gate
was not part of the initial design of LSTM, but was
added by [25] in order that the network will be able to
reset its state. The cell retains values over arbitrary
time intervals, while the three gates control the flow of
information related to the cell. Figure 1 shows a simple
LSTM model architecture with the gates, input, and
output.

Assuming a network that has N processing blocks
and M number of inputs, and activation functions for

the gates and memory cells are σ and g respectively,
In the block input, the block component denoted by zt
are updated by combining the present input xt and the

output of the LSTM unit ht−1, thereby we obtain [26],

zt = g(Uzxt + Rzht−1 + bz) (1)

where Uz and Rz are the weights associated with xt
and ht−1 , respectively, while bz is the bias weight
factor.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16968

At the input gate, with activation function

represented by it, we have,

it = σ(Uixt + Riht−1 + ρi ⊗ ct−1 + bi) (2)

where ⨂ denotes point-wise multiplication, Ui , Ri ,
and ρi are the weights of xt , ht−1 , and ct−1
respectively, while bi is the bias weight factor for the
input block.

At the forget gate with activation fucntion of ft, the
LSTM unit makes a choice of the information to be
removed from its previous cell state ct−1, therefore we
have,

ft = σ(Ufxt + Rfht−1 + ρf⨂ct−1 + bf) (3)

where Uf , Rf and ρf are the weights associated
with xt, ht−1 and ct−1 respectively, while bf is the bias
weight vector.

Now, computing the cell value, the block input zt,
and input gate, it , and the forget gate, ft values are
combined with the previous cell value, therefore, we
have,

ct = zt⨂it + ct−1⨂ft (4)

In the output gate terminal with activation function
of ot, the output value is calculated as:

ot = σ(Uoxt + Roht−1 + ρo⨂ct−1 + bo) (5)

where Uo , Ro and ρo are the weights associated

with xt, ht−1 and ct−1 respectively, while bo is the bias
weight vector.

Finally, the block output is combined to give,

ht = g(ct)⨂ot (6)

Fig. 1. Basic LSTM Model Structure.

III. METHODOLOGY

A. Dataset

Atmospheric data were obtained from the World
Weather Online in Hong Kong for Akure, Ondo State,
Nigeria, from July 2009 to October 2022. The
weather data comprised of Atmospheric pressure,
Visibility, Precipitation, Temperature and Humidity, and
it is a hourly time-series data.

B. Software

Data preparation, formatting and programming was
conducted using Python 3.9 [27], using the packages
imported are the numpy, panda, matplot and the
seaborn libraries. The LSTM model was built with
keras on Google TensorFlow, and was formulated
using the seaborn and sklearn libraries. For the error
calculation, the math and sklearn libraries were
employed.

C. Data Preparation

The data preparation algorithm imports essential
libraries, configures plotting settings, loads data into a
pandas dataframe, and performs data cleaning and
preprocessing. The steps include handling duplicates,
normalizing data, dealing with missing values, and
transforming data for analysis. This process prepared
the dataset for further machine learning tasks.The
pesudocode is presented as :

IMPORT TensorFlow AS tf
IMPORT pandas AS pd
IMPORT numpy AS np
IMPORT matplotlib.pyplot AS plt
IMPORT seaborn AS sns
IMPORT datetime
CONFIGURE PLOTTING
 ENABLE inline plotting for IPython
 SET seaborn and matplotlib DPI settings for figures
 SET seaborn context and style
 CONFIGURE matplotlib to use SVG format for outputs
LOAD DATA into DataFrame
IDENTIFY and REMOVE duplicated or irrelevant features in
DataFrame
PERFORM further data cleaning and preprocessing:
 - Normalize data if necessary
 - Handle missing values
 - Transform data for analysis
END

D. Stationarity Check

After the normalization, the stationarity check was
performed. Stationarity, for time-series analysis refers
to a statistical property where the statistical
characteristics of any data, such as mean, variance,
and auto-correlation structure, do not change over time
[28]. When a time-series is stationary, it makes the
series easier to model and predict. The Augmented
Dickey-Fuller (ADF) Test was used to carry out the
stationarity test check, and the alpha value, which is
the boundary that must not be exceeded was set to
0.05. Figs. 2, 3, 4, 5, and 6 presents the snippets of
stationarity check for visibility, precipitation, humidity,
temperature and pressure respectively. The x-axis is in
time, while the y-axis is the time series data (pressure,

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16969

humidity, temperature, visibility and rainfall). The
stationarity check result for visibility was obtained to be
2.978E-24, while for precipitation, 0.0 was obtained.
For pressure, humidity and temperature, the
stationarity check results were 5.16E-17, 3.64E-13 and
6.74E-19 respectively. These values showed that the
data is stationary over time.

The pseudocode used is presented as:

IMPORT matplotlib.pyplot, pandas, pmdarima.arima,
statsmodels.tsa.stattools, tensorflow.keras, sklearn.preprocessing
LOAD data
SET 'datetime' as index of DataFrame
PLOT 'humidity' time series
PERFORM stationarity tests:
 ADFTest with alpha=0.05
 Augmented Dickey-Fuller test, PRINT p-value
IF data non-stationary, consider differencing or transformations
PREPROCESS data for neural network:
 SCALE features using MinMaxScaler
 PREPARE training data set from selected columns, CONVERT to
float
BUILD LSTM model:
 DEFINE Sequential model
 ADD LSTM layers
 ADD Dropout layers (if needed)
 ADD Dense output layer
 COMPILE model with optimizer and loss function
TRAIN model on training data, SET epochs and batch size
FORECAST using the trained model
END

Fig. 2. Stationarity check graph for Visibility

Fig. 3. Stationarity check graph for Precipitation

Fig. 4. Stationarity Check Graph for Humidity

Fig. 5. Stationarity check graph for Temperature

Fig. 6. Stationarity check graph for Pressure

E. Forecasting Model Formulation and Training

After the stationarity check was done, the data was
preprocessed for neural network usage by using the
MinMaxScaler function to normalize the features to a
specific range. The data was prepared for training by
choosing the relevant features for training and
conversion of data type to float.

Thereafter, the sequential model was defined by
using a linear stack of layers, and the LSTM layers
were added in order to capture temporal depedencies.
To prevent overfitting, a dropout layer was added. To
fully produce the output, a dense output layer was
connected. For compilation, the ‘adam’ optimizer and
mean squared error was specified.

The model was fitted to the training data by
specifying the number of epochs and batch size. The
number of epoch used was 5, while the batch size was
16. Fig. 7 presents the LSTM model architecture
employed for the forecasting of weather data.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16970

Fig. 7. The LSTM network layout

F. Prediction

The number of hours of prediction was defined and
specified for fourteen (14) hours. Taking the last
number of hours for prediciton samples from the
training data, prediction was made using the model.
Next, a range of date starting from the end of the
training dates and spanning the number of prediciton
hours was created. Therafter, the predicitons were
repeated across the number of features in the original
training data frame for the purpose of inverse scaling.
After the inverse scaling, the timestamps were
converted back to dates and a construction of a data
frame containing the forecast dates and the predicted
weather entity were done. Finally, using the matplotlib
library, the actual weather entity was plotted.

IV. RESULTS

A. Training and Validation losses

The training and validation loss values for visibility,
precipitation, humidity, temperature, and pressure is
stated in Tables I to V. The training and validation plot
for the number of epochs for the five weather entities
are presented in Figs. 8 to 12. Significant reduction in
validation loss values as the training loss reduces
indicates that the model is not experiencing overfitting-
that is the model has learned to fit the training data too
closely, including noise or irrelevant patterns, and does
not generalize well to new data.

TABLE I. TRAINING AND VALIDATION LOSS FOR VISIBILITY

Number of

Epoch

Training Loss Validation

Loss

1 0.0252 0.0077

2 0.0114 0.0075

3 0.0097 0.0053

4 0.0090 0.0060

5 0.0087 0.0056

TABLE II. TRAINING AND VALIDATION LOSS FOR PRECIPITATION

Number of

Epoch

Training Loss Validation

Loss

1 0.000450 0.000252

2 0.000347 0.000258

3 0.000305 0.000194

4 0.000282 0.000164

5 0.000261 0.000218

TABLE III. TRAINING AND VALIDATION LOSS FOR HUMIDITY

Number of

Epoch

Training Loss Validation

Loss

1 0.0103 0.00170

2 0.0028 0.00088

3 0.0022 0.00087

4 0.0020 0.00060

5 0.0019 0.00063

TABLE IV. TRAINING AND VALIDATION LOSS FOR TEMPERATURE

Number of

Epoch

Training Loss Validation

Loss

1 0.00390 0.00069

2 0.00130 0.00047

3 0.0011 0.00045

4 0.00099 0.00068

5 0.00091 0.00035

TABLE V. TRAINING AND VALIDATION LOSS FOR PRESSURE

Number of

Epoch

Training Loss Validation

Loss

1 0.0065 0.0019

2 0.0019 0.0011

3 0.0016 0.0010

4 0.0015 0.0013

5 0.0014 0.00089

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16971

Fig. 8. Training and Validation loss plot for Visibility

Fig. 9. Training and Validation loss plot for Precipitation

Fig. 10. Training and Validation loss plot for Humidity

Fig. 11. Training and Validation loss plot for Temperature

Fig. 12. Training and Validation loss plot for Pressure

B. Prediction Outcome

The predicted and expected values for the five
weather entities were plotted and are shown in Fig. 13
to 17. The figures depict the closeness of the original
values and the predicted values. The use of LSTM
gave a close margin of error, thereby showing the
performance of this deep learning method for weather
forecasting. The Root Mean Squared Error (RMSE)
value for visibility and precipitation was obtained to be
0.078 and 0.034 respectively. For humidity, presure
and temperature, the RMSE values obtained were
1.531, 0.363, and 0.460 respectively. A lower RMSE
value indicates a better fit between the predicted and
actual values. For visibility, the RMSE of 0.078
suggests that, on average, the forecasted visibility
values deviates by approximately 0.078 units from the
actual visibility values. Similarly, for precipitation, the
RMSE of 0.034 indicates an average deviation of
approximately 0.034 units between the predicted and
actual rainfall values. This deviation is applcable to
humidity, pressure and temperature.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16972

Fig. 13. Original and Predicted values for Visibility

Fig. 14. Original and Predicted values for Precipitation

Fig. 15. Original and Predicted values for Humidity

Fig. 16. Original and Predicted values for Pressure

Fig. 17. Original and Predicted values for Temperature

V. CONCLUSION

In weather forecasting, different statistical and
traditional methods have been employed. Machine
learning tools have recently found usage in predicting
the state of the atmosphere , therefore the LSTM-
which is a deep learning model was used to predict
the next fourteen hours of weather data. A two-layer
LSTM network architecture was modelled in this paper.
It was clearly observed that the validation losses
obtained were lower than the training loss, thereby
indicating no overfitting. The measure of error used
was the Root Mean Squared Error (RMSE), with
values of 0.078, 0.034, 1.531, 0.363, 0.460 for
visibility, precipitation, humidity, pressure and
temperature respectively. These results shows that
LSTM is a deep learning model that can accurately
forecast and make predictions with less margin of
error. Future work will be to test different variants of
LSTM and make a comparison with other deep
learning method.

ACKNOWLEDGMENT

Olawuni Bayo is duly acknoweledged for the help in
the research.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 6, June - 2024

www.jmest.org

JMESTN42354399 16973

REFERENCES

[1] Abhishek, K., Singh, M. P., Ghosh, S., and Anand,
A, “Weather forecasting model using artificial
neural network”. Procedia Technology, 4, 2012,
pp. 311-318.

[2] Böcker, L., Dijst, M., and Prillwitz, J, “Impact of
everyday weather on individual daily travel
behaviours in perspective: a literature
review”. Transport reviews, 33(1), 2013, pp. 71-
91.

[3] Al Sadeque, Z., and Bui, F. M, “A deep learning
approach to predict weather data using cascaded
LSTM network”. In 2020 IEEE Canadian
conference on electrical and computer
engineering (CCECE) , 2020, pp. 1-5

[4] Powers, J. G., Klemp, J. B., Skamarock, W. C.,
Davis, C. A., Dudhia, J., Gill, D. O., and Duda, M.
G, “The weather research and forecasting model:
Overview, system efforts, and future directions”.
Bulletin of the American Meteorological
Society, 98(8), 2017, pp. 1717-1737.

[5] Goodfellow, I., Bengio, Y., and Courville, A,
“ Deep learning”. MIT press, 2016.

[6] LeCun, Y., Bengio, Y., and Hinton, G, “Deep
learning”. nature, 521(7553), 2015, pp. 436-444.

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E.
“Imagenet classification with deep convolutional
neural networks”. Advances in neural information
processing systems, 25, 2012.

[8] Schmidhuber, J, “Deep learning in neural
networks: An overview”. Neural networks, 61,
2015, pp. 85-117.

[9] Bengio, Y., Courville, A., and Vincent, P,
“Representation learning: A review and new
perspectives”. IEEE transactions on pattern
analysis and machine intelligence, 35(8), 2013,
pp. 1798-1828.

[10] Chen, X. W., and Lin, X, “Big data deep learning:
challenges and perspectives”, IEEE access, 2,
2014, pp. 514-525.

[11] Hochreiter, S., and Schmidhuber, J, “Long short-
term memory”. Neural computation, 9(8), 1997,
pp. 1735-1780.

[12] Maqsood, I., Khan, M. R., and Abraham, A, “An
ensemble of neural networks for weather
forecasting”, Neural Computing and
Applications, 13, 2004, pp. 112-122.

[13] Grover, A., Kapoor, A., and Horvitz, E, “A deep
hybrid model for weather forecasting” ,
In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery
and data mining , 2015, pp. 379-386.

[14] Liu, J. N., Hu, Y., You, J. J., and Chan, P. W,
“Deep neural network based feature
representation for weather forecasting”,
In Proceedings on the International Conference
on Artificial Intelligence (ICAI) (p. 1). The Steering
Committee of The World Congress in Computer
Science, Computer Engineering and Applied
Computing (WorldComp), 2014.

[15] Hossain, M., Rekabdar, B., Louis, S. J., and
Dascalu, S, “Forecasting the weather of Nevada:

A deep learning approach”. In 2015 international
joint conference on neural networks (IJCNN),
2015, pp. 1-6, IEEE.

[16] Holmstrom, M., Liu, D., and Vo, C, “Machine
learning applied to weather forecasting”. Meteorol.
Appl, 10, 2016, pp. 1-5.

[17] Campbell, S. D., and Diebold, F. X, “Weather
forecasting for weather derivatives”. Journal of the
American Statistical Association, 100(469), 2005,
pp. 6-16.

[18] Hewage, P., Trovati, M., Pereira, E., and Behera,
A, “Deep learning-based effective fine-grained
weather forecasting model”. Pattern Analysis and
Applications, 24(1), 2021, pp. 343-366.

[19] Zhou, K., Zheng, Y., Li, B., Dong, W., and Zhang,
X, “Forecasting different types of convective
weather: A deep learning approach”, Journal of
Meteorological Research, 33, 2019, pp. 797-809.

[20] M. Hossain, B. Rekabdar, S. J. Louis and S.
Dascalu, "Forecasting the weather of Nevada: A
deep learning approach," 2015 International Joint
Conference on Neural Networks (IJCNN),
Killarney, Ireland, 2015, pp. 1-6, doi:
10.1109/IJCNN.2015.7280812.

[21] Abdulla, N., Demirci, M., and Ozdemir, S, “Design
and evaluation of adaptive deep learning models
for weather forecasting”, Engineering Applications
of Artificial Intelligence, 116, 2022, pp. 105440.

[22] Liu, J.N.K., Hu, Y., He, Y., Chan, P.W., and Lai, L,
“Deep Neural Network Modeling for Big Data
Weather Forecasting”, In: Pedrycz, W., Chen,
SM. (eds) Information Granularity, Big Data, and
Computational Intelligence. Studies in Big Data,
vol 8. Springer, 2015. https://doi.org/10.1007/978-
3-319-08254-7_19

[23] Hochreiter, S., Schmidhuber, J, “Lstm can solve
hard long time lag problems”. In: M.C. Mozer, M.I.
Jordan (eds.) Advances in Neural Information
Processing Systems 9, pp. 473–479. MIT Press
(1997)

[24] Yu, Y., Si, X., Hu, C., and Zhang, J, “A review of
recurrent neural networks: LSTM cells and
network architectures”. Neural computation, 31(7),
2019, pp. 1235-1270.

[25] Gers, F. A., Schmidhuber, J., and Cummins, F,
“Learning to forget: Continual prediction with
LSTM”, Neural computation, 12(10), 2000, pp.
2451-2471.

[26] Van Houdt, G., Mosquera, C., and Nápoles, G, “A
review on the long short-term memory
model”, Artificial Intelligence Review, 53(8), 2020,
pp. 5929-5955..

[27] Python Software Foundation, 2021, Python 3.9.13
documentation, Avaliable at Download — Python
3.9.13 documentation

[28] Kočenda, E., and Černý, A, “Elements of time
series econometrics: An applied approach”.
Charles University in Prague, Karolinum Press,
2015.

http://www.jmest.org/
https://doi.org/10.1007/978-3-319-08254-7_19
https://doi.org/10.1007/978-3-319-08254-7_19
https://docs.python.org/release/3.9.13/download.html
https://docs.python.org/release/3.9.13/download.html

