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Abstract—Detecting traffic anomalies is a crucial 
task in numerous network management systems. 
One significant approach that has emerged 
involves using statistical analysis to identify a 
specific class of Internet traffic anomalies. This 
method leverages a mathematical model of 
equilibrium to examine strongly correlated flows, 
which change in a way that reveals this class of 
anomalies. Notably, this approach identifies 
anomalies caused by large sets of correlated 
flows without needing to train a model on 
historical data. In this paper,  we propose a new 
scheme (called sTime1) to identify significant time 
intervals by having of a large enough flows 
according to Gaussian distribution and a good 
enough error rate under certain statistical 
assumption. Experiments on real traffic traces 
demonstrate that the sTime1 scheme can enhance 
performance of detection by improving the 
number of detected anomalies as well as reducing 
the detection time in compare with other 
approaches. 

Keywords—Anomaly, Anomaly detection, 
Gaussian distribution, Time Interval, Traffic. 

I. INTRODUCTION 

Anomaly detection are widely used in network 
monitoring and network security application [6,17]. 
Traffic anomaly is a data point that significantly 
deviates from normal pattern of network traffic data 
[1,6,9,16]. The goal of traffic anomaly detection is to 
monitor traffic and flag an alarm whenever some 
abnormal events happen. Anomaly detection 
algorithms normally require building a statistical model 
of normal traffic and defining an anomaly as a 
deviation from normal [5,7,8]. In these techniques, 
traffic data are aggregated into one or more time 
series, example flow counts in fixed-sized time series. 
Next, the time series is compared to a pre-selected 
model of normal traffic behavior and an anomaly is 
flagged whenever the observed traffic deviates from 
the model. However,  besides the computational 
overhead of periodically re-training the model. 

Another approach of anomaly detection is based 
on the flow changing model of equilibrium [2]. This 
model is developed based on an empirical 
observation that the average volume change across 

the flows in a link is close to zero. This flow 
equilibrium property holds if all the flows are nearly 
independent and stationary [4,11,18] and it is violated 
by traffic changes caused by several small and 
correlated flows.  
In this paper, we are interested in anomaly detection 
method within time intervals to detect anomalies as 
soon as possible and in real time. A time interval is 
said to contain an anomaly whenever the measured 
value falls outside the meaning value. Besides, we are 
also interested in relationship of flow counts, time 
intervals and anomaly count in network anomaly 
detection by statistical method. 
Real-time anomaly detection needs to analyze traffic 
data in correspondent time intervals with a view to 
provide a quick and possibly warning of ongoings 
traffic anomalies. The determination of the initial time 
interval (t1) and  significant time intervals (sti) are very 
important, as the basis for verifying anomalies when 
compared with threshold, to shorten computation the 
time and ensure flow sets is Gaussian distribution with 
two assumptions on empirical properties of traffic flow 
properties. Our approach will improve the model by 
these points. Besides, the performance of the model 
depends on initiative thresholds and guarantees the 
needed flows as well as maximize anomalies 
according to sti. 
We present in this work sTime1 detection algorithm to 
define fast significant minimum time intervals and 
measured flows under different time intervals to define 
anomalies as well as appropriate significant time 
intervals detecting anomalies by comparing with other 
detectors [10,14,15]. By this way, the scheme can 
show distribution of anomalies in time interval in time 
series and number of detected anomalies is detected 
better. Our improvement by finding sti will enhance 
effect of anomaly detection in real-time and can 
monitor of anomalies changes in each day. The 
method is quite simple, low complexity and fast 
computing time. This is a single method can find many 
different types of events that without knowing them in 
advance.  
The rest of paper is organized as follows. In section II, 
we present the problem definition. Our solution will be 
described in Section III. We present in Section IV the 
experimental results on real data traces from WIDE 
project.  Section V finally concludes this paper. 
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many alarms that overlap anomalies. Thus, we need 
analysis more details flows to differentiate alarms and 
kind of anomalies. 
On the contrary, time interval is bigger sti then 
anomalies can be missed because anomalies occur in 
the short time. We can adjust threshold as a result, it 
can be overlapped anomalies. Moreover, in bigger 
time it can hardly to detect anomalies online.  

V. CONCLUSION AND FUTURE WORK 

This paper presents a novel anomaly detection 
technique for network traffic analysis. The method 
leverages empirical flow properties, enabling anomaly 
identification without pre-defined models of normal 
behavior. This unsupervised approach offers key 
advantages: 

 Simplicity: Our method requires no training 
data, making it less susceptible to data 
poisoning attacks. 

 Efficiency: We introduce the sTime1 
algorithm, which analyzes real traffic traces 
from the MAWI archive to identify significant 
time intervals. This statistically-driven 
approach reduces computation time and 
enhances detection efficiency. 

Our results demonstrate that anomalies can be 
effectively detected by analyzing deviations in flow 
properties that follow a Gaussian distribution. We 
employ a threshold (K(p)) to distinguish between 
normal and anomalous behavior. Additionally, our 
experimental time scheme achieves anomaly 
detection within 120 seconds. 
While the proposed method exhibits promising results, 
including comparable anomaly detection rates to the 
established PGHK detector, further investigation is 
necessary: 

 Anomaly Type Classification: We currently 
do not delve into identifying specific types of 
anomalies or the flow distributions that trigger 
them. Future work will explore methods to 
assess these relationships for each anomaly. 

 Online Detection and Machine Learning 
Integration: Our current approach focuses on 
offline analysis. We plan to investigate 
techniques for online anomaly detection and 
incorporate machine learning algorithms to 
potentially improve detection accuracy and 
identify specific anomaly types. 
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